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§1: Introduction and motivation

Our starting point of these notes are two observations:

1. By the Rellich-Kondrachov Theorem, we know that if Ω ⊂ R
d is a bounded domain with C1

boundary, then we have:

Theorem (RK). Given p,q ∈ [1,∞) satisfying 1
q >

1
p−

1
d , then the embeddingW 1,p(Ω) ↪→

Lq(Ω) is compact.

2. The special case of the above compactness theorem, where p = q = 2, is used frequently in the
study of weak solutions of elliptic PDEs. Specifically, noting that the solution operator L−1

γ for
a problem provides a continuous mapping L2 → H1

0 , this allowed us to apply the theory of
compact operators on L2 to develop Fredholm theory. And as we saw in class, a large part of the
application of compactness is the extraction of convergent subsequences.

Our goal is to further explore these topics. The main question we hope to address is the following:

Question. In class (and in your homework), we have already shown that both the bound-
edness of the domain Ω and the strictness of the inequality q < dp

d−p is required for the

compactness of the W 1,p ↪→ Lq embedding. (We will recall these below.) Is there a way to
overcome these two issues and get some remnant of compactness?
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Specifically, we want to examine whether some degree of compactness remains in the
W 1,2(Rd) ↪→ Lq(Rd) embedding, for q ∈ [2, 2d

d−2 ); and whether some degree of compactness
remains in the W 1,2 ↪→ Lq embedding for q = 2d

d−2 .

It turns out that these questions can be answered by the powerful machinery of concentration com-
pactness, which was originally formulated by P.L. Lions1. The method has since then gained traction
as a powerful tool in the study of nonlinear partial differential equations. The functional analytic
foundations of the method is discussed in detail in the book by Tintarev and Fieseler2. In these notes
we will present a simple example of the theory, focused on the space H1(Ω).

§1.1 Model problem.— To make our discussion more concrete and focussed, let’s think about the
following problem.

Model Problem. Let Ω be a domain, and let q be an admissible exponent such that the
Sobolev embedding H1(Ω) ↪→ Lq(Ω) holds. Recall that this states: there exists C > 0 such
that for every u ∈H1(Ω), we have

∥u∥Lq(Ω) ≤ C∥u∥H1(Ω).

Let C∗ denote the infimum of all C for which the Sobolev inequality holds; this is a well-
defined positive number. We wish to ask: does there exist a non-trivial u∗ ∈H1(Ω) such that
∥u∗∥Lq = C∗∥u∗∥H1(Ω)?

We call such an u∗ an optimizer for the Sobolev embedding.

Theorem 1.1. Let d ≥ 3 and let Ω ⊆ R
d be bounded, then there is an optimizer for the H1

0 (Ω) ↪→ Lq(Ω)
embedding when q ∈ [2, 2d

d−2 ). Additionally, if Ω has C1 boundary (so it is an extension domain), then there
is an optimizer for the H1(Ω) ↪→ Lq(Ω) embedding.

Proof. The proof of the case where Ω is an extension domain is mostly the same as the first case, so we
will just do the first case for brevity.

We have the following characterization of C∗. Note that if C is such that the Sobolev embedding holds,
then we have

1
C
≤
∥u∥H1

0

∥u∥Lq
for all u , 0. In other words, 1

C is a lower bound for the set{
∥u∥H1 : u ∈H1

0 (Ω),∥u∥Lq = 1
}
.

By definition, 1
C∗

is the greatest such lower bound, and hence

1
C∗

= inf
{
∥u∥H1 : u ∈H1

0 (Ω),∥u∥Lq = 1
}
.

1The method actually predates Lions, and have seen several uses by people solving individual problems. Lions is generally
credited with recognizing the common thread behind those techniques and formulating it as an abstract principle. See his
series of papers, all titled “The concentration compactness principle in the calculus of variations” in 1984–1985.

2K. Tintarev and K.-H. Fieseler, Concentration Compactness: Functional-Analytic Grounds and Applications, Imperial College
Press (2007).
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By the definition of infimum, there must then exist a sequence {uk} of H1
0 functions, with ∥uk∥Lq = 1

for every k, such that lim∥uk∥H1 = 1
C∗

. This convergence implies that {uk} is bounded in H1
0 .

By the Banach-Alaoglu Theorem, norm bounded subsets in a Hilbert space is weakly pre-compact,
and hence there exists a subsequence (which we will by abuse of notation also call {uk}) that weakly
converges to an element u∗ ∈H1

0 (Ω). Notice that

0 ≤ liminf∥uk −u∗∥2 = liminf
(
∥uk∥2 − 2⟨uk ,u∗⟩+ ∥u∗∥2

)
.

Using that weak convergence guarantees

lim⟨uk ,u∗⟩ = ∥u∗∥2

we find as a conclusion, the well-known fact that for weakly convergent sequences in a Hilbert space

∥u∗∥2H1
0
≤ liminf∥uk∥2H1

0
. (1.2)

As by construction {uk} is a minimizing sequence, we find

∥u∗∥H1
0
≤ 1
C∗
.

By the Rellich-Kondrachov Theorem, some further subsequence (which again we still write as {uk}
will converge strongly in Lq, call the limiting function ũ. Since q ≥ 2 and Ω is bounded, we must
have that uk → ũ strongly also in L2. Then it follows that uk converges weakly to ũ in L2 also. On
the other hand, given any g ∈ L2, by the Riesz representation theorem there exists g̃ ∈H1

0 such that
⟨v, g̃⟩H1

0
=
∫
Ω
vg. Thus we see that as uk converges weakly to u∗ in H1

0 , we also have uk converging

weakly to u∗ in L2. But the uniqueness of weak limits then states that u∗ = ũ.

The strong convergence in Lq shows therefore that ∥u∗∥Lq = 1. By definition of C∗ we must have then

∥u∗∥H1
0
≥ 1
C∗
.

Using our earlier conclusion, we combine to find that ∥u∗∥H1
0

= 1
C∗

and hence is the optimizer that we
seek.

Remark 1.3 (Connection to PDEs). One may wonder: what does the model problem have to do with
partial differential equations? As discussed in the proof above, the optimizer u∗ is the minimizer for
the constrained problem “minimize ∥u∥H1 for u ∈H1

0 (Ω) under the constraint that ∥u∥Lq = 1.” If this
problem seems familiar to you, it is because we’ve in this class dealt with a similar problem before.

Previously we studied the eigenvalue problem for elliptic operators. And using Rayleigh’s formula, we
were about to formulate the problem of finding the principal eigenvalue and eigenfunction of the
Laplacian to a similar minimization problem. More precisely, Rayleign’s formula give the principal
eigenvalue λ1 and principal eigenfunction u1 of the operator −∆ on a bounded domain Ω by casting
it as the minimization of ∥∇u∥L2 under the constraint ∥u∥L2 = 1. Recall further that this can be
interpreted as finding a weak solution to the partial differential equation −∆u = λu for u ∈H1

0 .
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It turns out that the model problem above is similarly related to a nonlinear PDE. Knowing that the
minimizer u∗ exists, by Fermat’s principle together with Lagrange multipliers, we know that there
exists a λ such that for any v ∈H1

0 ,

lim
s→0

1
s

(
∥u∗ + sv∥2H1 − ∥u∗∥2H1 +λ∥u∗ + sv∥qLq −λ∥u∗∥

q
Lq

)
= 0.

(Here λ is the Lagrange multiplier, and we write the constraint as ∥u∥qLq = 1, and the quantity to
minimize as ∥u∥2

H1 .) Using that

∥u∗ + sv∥2H1 = ∥u∗∥2H1 + s2∥v∥2H1 + 2s
∫
∇u∗ · ∇v +uv dx

and

∥u∗ + sv∥qLq = ∥u∗∥
q
Lq + qs

∫
|u∗|q−2u∗v +O(s2)

we see that u∗ being the constrained minimizer is equivalent to requiring∫
2∇u∗ · ∇v + 2uv +λq|u∗|q−2u∗v dx = 0 (1.4)

for every v ∈H1
0 , with the additional requirement that ∥u∗∥Lq = 1. This equation can be interpreted as

asking for u∗ to be a weak solution to the nonlinear elliptic problem−∆u∗ +u∗ +
qλ

2
|u∗|q−2u∗ = 0

u∗|∂Ω = 0
(1.5)

Indeed, the techniques illustrated in these notes can be useful for solving similar nonlinear ellip-
tic problems that admit variational formulations. Some of the historical highlights of this line of
arguments include the solution of the Yamabe Problem3, and the Sacks-Uhlenbeck Theorem4.

Remark 1.6. An interesting consequence is the following: Let U,V be bounded connected open
domains with C1 boundary, with U ⊊ V (and so that V \U contains an open set). Then the sharp
constants C∗,U and C∗,V in the Sobolev embedding H1

0 ↪→ Lq has the relationship C∗,U < C∗,V .

The non-strict inequality follows from the description

1
C∗,U

= inf
{
∥u∥H1 : u ∈H1

0 (Ω),∥u∥Lq = 1
}
.

Noting that if u ∈H1
0 (U ), extending u by zero across the boundary we get a function ū ∈H1

0 (V ). So the
infimum over V must be smaller, and so we have 1

C∗,U
≥ 1
C∗,V

. This is essentially also what you proved
on Problem 7 of Problem Set 5 of this course, for the eigenvalues.

To get the strict inequality: suppose that the two values were actually equal. This means that an
optimizer for the U problem is also an optimizer for the V problem. Let u∗,U be the optimizer, which

3See, T. Aubin, “Équations différentielles non linéaires et problème de Yamabe concernant la courbure scalaire”, J. Math.
Pures Appl. (1976), or T. Aubin, Some nonlinear problems in Riemannian geometry, Springer (1998).

4J. Sacks and K. Uhlenbeck, “The Existence of Minimal Immersions of 2-Spheres”, Annals of Math. (1981)
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we think of as an optimizer for the V problem that vanishes on V \U . Looking at the nonlinear problem
(1.5), we see that when u∗,U ≈ 0, we can regard u∗,U as satisfying an expression of the form Lu∗,U = 0
where

L = −∆+ 1 +
qλ

2
|u∗|q−2︸          ︷︷          ︸

>0

.

The positivity of the “c” term means we can apply the strong maximum principle. But now we run
into trouble in a neighborhood of V \U since the function vanishing on an open set implies it must
vanish everywhere. This leads to a contradiction as u∗,U has Lq norm 1. So the inequality must be
strict: that u∗,U cannot actually be an optimizer for the problem in the larger domain.

In the proof of the theorem above, we showed that if uk ⇀u in H1
0 then uk → u in Lq. The argument

given there can be abstracted as the following Lemma. We record it here since this argument will be
used many times in the sequel.

Lemma 1.7. Let X,Y be reflexive Banach spaces, and T : X→ Y a compact operator. Then xk ⇀x implies
T xk → T x.

Proof. Since xk converges weakly, the sequence must be norm bounded (uniform boundedness princi-
ple). Therefore by the compactness of T , the sequence T xk has a convergent subsequence T xkj → y ∈ Y .

On the other hand, letting ϕ ∈ Y ∗, the adjoint operator T ∗ : Y ∗→ X∗ is continuous, and we have that
ϕ(T xk) = T ∗ϕ(xk)→ T ∗ϕ(x) = ϕ(T x) by weak convergence of xk → x, so T x is also a weak limit of T xk .

Since strong limits are weak limits, and weak limits are unique, this means that T x = y.

Now, instead of applying this argument to xk , we apply it to any subsequence of xk , this shows that any
subsequence of T xk has a subsequence convergent to T x. Standard metric space theory then shows
this means T xk → T x.

In the remainder of these notes, we will try to answer the existence problem for the optimizer of
Sobolev embedding after relaxing the conditions. First we will relax the condition that Ω is bounded.
Secondly (if time permits) we will relax the condition that q < 2d

d−2 and study the limiting case q = 2d
d−2 .

For historical reference, the codification of the concentration compactness argument for studying
Sobolev embeddings was due to Gérard5

Remark 1.8 (Notation for sequences). In the following, to simplify notation, we will use u⃗ to denote a
sequence, and uj to denote its individual terms. Given a strictly increasing function ζ : N→N, we
will denote the subsequence traditionally labeled as {uζj } also by the notation u⃗ ◦ ζ. The individual
terms of this subsequence may be referred to as either uζ(j) or uζj ; the former can become easier to use
when handling nested subsequences.

§2: Non-compactness from translations

We will first tackle the question of the compactness of the Gagliardo-Nirenberg-Sobolev embedding
H1(Rd) ↪→ Lq(Rd). Here d ≥ 3 and q ∈ [2, 2d

d−2 ). Now, this embedding is known to be non-compact.

5P. Gérard, “Description du défaut de compacité de l’injection de Sobolev”, ESAIM Control Optim. Calc. Var. 3 (1998).
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Example 2.1. Let u0 ∈ C∞c (B(0,1)) be chosen with ∥u0∥Lq = 1. Let xi = (2i,0,0, . . . ,0) ∈ R
d . Set

ui(x) = u0(x − xi). Then if i , j, the functions ui and uj have disjoint support, and so ∥ui −uj∥Lq =
√

2,
therefore the sequence u⃗ has no Cauchy subsequences in Lq. On the other hand, by construction we
have ∥ui∥H1 = ∥u0∥H1 so the sequence is bounded in H1(Rd). This shows that the Gagliardo-Nirenberg-
Sobolev embedding cannot be compact.

Now, returning to the Proof of Theorem 1.1, we see that this poses the main difficulty in constructing
an optimizer for the embedding problem. The Banach-Alaoglu step holds for general Hilbert spaces
and doesn’t care that our underlying domain is non-compact. And the uniqueness of the weak limit is
also generally true. At issue is that we may not have a strong limit in Lq, due to the lack of compactness.
Our discussion in this section will show that if we somehow “compensate” for the non-compactness
arising from translations in R

d , we can regain the existence of strong limits in Lq and thereby obtain
the existence of an optimizer.

§2.1 Weak convergence modulo translations.— Our goal is to compensate for the non-compact
translations, so we start by defining a weak convergence concept that quotients out translations.

Definition 2.2. Given a function u : Rd →R, we denote by τyu(x) := u(x − y) its translation by y.

Given a sequence u⃗ of functions on R
d , and y⃗ a sequence of points in R

d , by τy⃗ u⃗ we will understand
the sequence of functions whose individual terms are τykuk .

Definition 2.3 (τ-weak convergence). Given a sequence u⃗ in H1(Rd), we say that the sequence
converges weakly modulo translations to a function u, or that the sequence converges τ-weakly to u, or

in symbols uk
τ
⇀u, if for any ϕ ∈H1, we have

lim
k→∞

sup
y∈Rd
⟨uk −u,τyϕ⟩ = 0.

Here ⟨f ,g⟩ =
∫
∇f · ∇g + f g is the H1 inner product.

Proposition 2.4. uk
τ
⇀u if and only if for every sequence y⃗ in R

d , the sequence whose terms are τyk (uk −u)
converges to 0 weakly.

Proof. τyk (uk −u)⇀ 0 ⇐⇒ ∀ϕ⟨τyk (uk −u),ϕ⟩ → 0 ⇐⇒ ∀ϕ⟨uk −u,τ−ykϕ⟩ = 0.

For each ϕ, there exists a sequence y⃗ϕ such that∣∣∣∣∣∣∣sup
y∈Rd
⟨uk −u,τyϕ⟩ − ⟨uk −u,τyϕk ϕ⟩

∣∣∣∣∣∣∣ < 1
k
.

Therefore ∀y⃗ τyk (uk −u)⇀ 0 =⇒ uk
τ
⇀u.

The reverse implication follows from observing that for any sequence y⃗, it holds from definition that
⟨uk −u,τ−ykϕ⟩ ≤ supy∈Rd ⟨uk −u,τyϕ⟩.

Corollary 2.5. If uk
τ
⇀u, then uk ⇀u.

6
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Proposition 2.6. Given uk ⇀ 0, if the sequence y⃗ does not converge to infinity, then there exists a
subsequence indexed by ζ : N→N such that τyζ(j)

uζ(j) ⇀ 0.

Proof. First, we note that weakly bounded sequences are bounded, and so u⃗ is a bounded sequence.

By Bolzano-Weierstrass, if y⃗ does not converge to infinity, then it contains a convergent subsequence
y⃗ ◦ ζ→ y. Since translations act continuously on H1, we have that for every ϕ ∈H1, τ−yζ(j)

ϕ→ τ−yϕ
strongly. Using that ⟨τyζ(j)

uζ(j),ϕ⟩ = ⟨uζ(j), τ−yζ(j)
ϕ⟩, we get

|⟨uζ(j), τ−yζ(j)
ϕ⟩| ≤ |⟨uζ(j), τ−yϕ⟩|+ |⟨uζ(j), τ−yζ(j)

ϕ − τ−yϕ⟩|.

The first term converges to zero due to the assumed weak convergence uk ⇀ 0. The second term
converges to zero since u⃗ is uniformly bounded and τ−yζ(j)

ϕ→ τ−yϕ strongly.

The requirement that y⃗ does not converge to infinity is important.

Example 2.7. Let uk = τxku0 be as in Example 2.1, then uk ⇀ 0. Let yk = −xk , then τykuk = u0 is the
constant sequence, and hence has no subsequence that converges weakly to zero.

This also shows that the converse of Corollary 2.5 is false.

On the other hand, we have the strong convergence implies τ-weak convergence.

Proposition 2.8. Given uk → u, then uk
τ
⇀u.

Proof. We use that norm convergence is translation invariant, and so uk → u =⇒ τyk (uk −u)→ 0 in
norm, and hence weakly, for any sequence y⃗. By Proposition 2.4 this proves the proposition.

Example 2.9. The converse of the above proposition is false. Let uk be as in Example 2.1; recall that
they have pairwise disjoint support. Define

vk =
1
√
k

k∑
j=1

uj .

Due to the pairwise disjoint support, we have that ∥vk∥H1 = ∥u0∥H1 , and so clearly vk ̸→ 0.

I claim however that vk
τ
⇀ 0. Let ϕ ∈H1, and ϵ > 0. There exists a ball B of radius R sufficiently large

such that ∥ϕ∥H1(Bc) ≤ ϵ. By construction, any translations of this ball B can fit at most R/2 of the uk in
it simultaneously. And so we have

⟨vk , τyϕ⟩ = ⟨vk , (τyϕ)τyB⟩+ ⟨vk , (τyϕ)|τyBc⟩.

The first term is bounded by

|⟨vk , (τyϕ)τyB⟩| ≤
R

2
√
k
∥u0∥H1∥ϕ∥H1 .

The second term is bounded by
|⟨vk , (τyϕ)τyBc⟩| ≤ ∥u0∥H1ϵ.

7
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So first choosing ϵ sufficiently small, and then choosing k sufficiently large to compensate for R, we
see that |⟨vk , τyϕ⟩| can be made arbitrarily small (for sufficiently large k), independently of y. This

shows exactly that vk
τ
⇀ 0.

Example 2.10. Observe however, that the functions vk converges strongly to 0 in Lq, for q > 2. Indeed,
using the disjoint support condition, we have

∥vk∥
q
Lq =

k∑
j=1

1
kq/2
∥uj∥

q
Lq =

1

k(q−2)/2
∥u0∥

q
Lq ↘ 0.

The previous example provides some evidence for the following theorem, which is the main result
of this section. It indicates that the notion of τ-weak convergence in H1 is intimately tied to strong
convergence in Lq.

Theorem 2.11. Let u⃗ be a bounded sequence of H1(Rd) functions. Then the following two statements are
equivalent:

1. uk
τ
⇀ 0;

2. ∥uk∥Lq → 0 for some q ∈ (2, 2d
d−2 ).

Proof that 1 =⇒ 2. This proof is using essentially the same argument that appeared in the previous
example.

We will divide up R
d into a countable collection of disjoint unit cubes Qµ, indexed by µ ∈N. Given a

function f : Rd →R, we will denote by πµf its restriction to Qµ. We observe the following, due to the
disjoint nature of the cubes:

• ∥f ∥H1(Rd ) =
(∑

µ ∥πµf ∥2H1(Qµ)

)1/2
;

• ∥f ∥Lq(Rd ) =
(∑

µ ∥πµf ∥
q
Lq(Qµ)

)1/q
.

Additionally, we have that on each of the unit cubes, we can apply Sobolev embedding: there exists
some constant C such that ∥πµf ∥Lq ≤ C∥πµf ∥H1 .

Now consider the function uk . We have, since 2 < q <∞, we can apply Hölder’s inequality to obtain
the interpolation

∥uk∥Lq(Rd ) =

∑
µ

∥πµuk∥
q
Lq(Qµ)


1/q

≤

∑
µ

∥πµuk∥2Lq(Qµ)


1/q sup

µ
∥πµuk∥Lq(Qµ)

1−2/q

8
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and now by Sobolev embedding on the terms inside the first brackets

≤ C2/q

∑
µ

∥πµuk∥2H1(Qµ)


1/q sup

µ
∥πµuk∥Lq(Qµ)

1−2/q

≤ C2/q∥uk∥
2/q
H1(Rd )

sup
µ
∥πµuk∥Lq(Qµ)

1−2/q

.

By hypothesis, we have that ∥uk∥H1 is uniformly bounded. Therefore to prove our desired conclusion,
it is enough to show that

sup
µ
∥πµuk∥Lq(Qµ)→ 0. (2.12)

Now, for each uk , there exists a cube Qµk such that

∥πµkuk∥Lq(Qµk ) ≥
1
2

sup
µ
∥πµuk∥Lq(Qµ)

by the definition of the supremum. Let yk be such that τyk brings the cube Qµk to the location of Q1,
so that

π1τykuk = τykπµkuk .

Now consider the sequence τykuk : by our hypothesis uk
τ
⇀ 0 and hence τykuk ⇀ 0, and henceπ1τykuk ⇀

0. On the other hand, since Q1 is a bounded domain, we know that the embedding H1(Q1) ↪→ Lq(Q1)
is compact, and hence by Lemma 1.7 we have that ∥π1τykuk∥Lq → 0. By construction, as ∥π1τykuk∥Lq =
∥πµkuk∥Lq ≥

1
2 supµ ∥πµuk∥Lq , this shows (2.12) holds as desired.

Proof that 2 =⇒ 1. Let {yk} be an arbitrary sequence in R
d . Let {vj } be an arbitrary subsequence of

{τykuk}. By Banach-Alaoglu, {vj } has a weakly convergent subsequence in H1; let v denote said weak
limit. Let A be some round ball. Applying Rellich-Kondrachav and Lemma 1.7 (using that vj → 0
strongly in Lq) we see that v|A = 0.

Now given ϕ ∈H1
0 (A), extended by 0 to the exterior of A, consider the sequence of numbers ⟨τy⃗ u⃗,ϕ⟩.

The argument given in the previous paragraph shows that any subsequence of this sequence has a
further subsequence that converges to 0. This shows that this sequence converges to 0. Now using
that H1 functions of compact support is dense in H1, we see this shows that τy⃗ u⃗ converges weakly to

zero. Since y⃗ is arbitrary, by Proposition 2.4 this shows that uk
τ
⇀ 0.

Corollary 2.13. If a sequence of H1(Rd) functions uk
τ
⇀u, then uk converges to u strongly in Lq(Rd) for

any q ∈ (2, 2d
d−2 ).

§2.2 Cores and profiles.— In view of Corollary 2.13, our next task is to clarify under what situations
can we obtain τ-weak convergence of a derived sequence, starting from a bounded sequence of H1(Rd)
functions. The following example shows that the situation can be complicated.

9



Compactness and Non-compactness MTH 849: PDE2

Example 2.14. Fix u0 ∈ C∞0 (B(0,1)). Consider a sequence of points xk ∈Rd diverging to infinity. Now
define a sequence of functions

uk = u0 + τxku0.

I claim that this bounded sequence has no τ-weak limit.

Indeed, were u∗ the τ-weak limit of uk , then uk ⇀ u∗ necessarily, which would imply that u∗ = u0
(using that xk diverges to infinity and so τxku0 ⇀ 0). However, τ−xk (uk −u0) = u0 ̸⇀ 0. This show that
bounded sequences need not have τ-weak limits. In fact, our construction shows something stronger:
not only does {uk} have no τ-weak limits, there are no subsequences of {uk} with τ-weak limits.

In the preceding example, the lack of τ-weak convergence is essentially due to a “portion” of the
sequence uk “moving away to infinity in a coherent way”. One can generalize this situation to
having countably many parts that diverge to infinity at different rates. This motivates us to our main
construction.

Definition 2.15 (τ-core). By a τ-core we refer to a sequence φ⃗ of the form φk = τykφ, where φ . 0.
Here the fixed function φ is called the shape of the core, and the sequence y⃗ its progression.

Definition 2.16 (τ-equivalence of cores). Given two τ-cores φ⃗ and ψ⃗ with shapes φ and ψ and
progressions y⃗ and z⃗ respectively, we say they are τ-equivalent, denoted φ⃗

τ≈ ψ⃗, if y⃗ − z⃗ is convergent
with limit w, and that τwφ = ψ.

Below we will use the usual notation for equivalence classes: [φ⃗] := {ψ⃗ : ψ⃗
τ≈ φ⃗}.

Remark 2.17. As a direct consequence of the definition, whenever φ⃗
τ≈ ψ⃗, we also find φ⃗ − ψ⃗ → 0

strongly in H1. Additionally, note that if φ⃗
τ≈ ψ⃗ and letting φ and ψ be their respective shapes,

necessarily ∥φ∥ = ∥ψ∥ for any τ-invariant norm on functions. This means that it is meaningful to write
∥[φ⃗]∥ for the norm of an equivalence class of τ-cores.

We have required above that τ-cores be necessarily a non-trivial sequence. This is because that in
H1, the only function satisfying τwf = f with w , 0 is the zero function. And so given a τ-core φ⃗ and
a choice of shape φ, the corresponding progression y⃗ is uniquely determined. (One can of course
translate each yk by a fixed vector −w, and select τwφ as the shape; this defines the same τ-core just
with a different parametrization.)

An important property of equivalence is the following:

Lemma 2.18. Let φ⃗ and ψ⃗ be equivalent τ-cores, with shapesφ,ψ and progressions y⃗, z⃗ respectively. Suppose
a bounded sequence u⃗ of H1 functions is such that τ−y⃗ u⃗ ⇀ φ, then τ−z⃗u⃗ ⇀ ψ.

Proof. Let v ∈ H1. Denote w⃗ = y⃗ − z⃗; τ-equivalence implies that wk → w. Our hypothesis states that

⟨τ−ykuk −φ,v⟩ → 0 =⇒ ⟨τ−wkτ−zkuk −φ,v⟩ → 0 =⇒
⟨τ−zkuk − τwkφ,τwkv⟩ → 0 =⇒ ⟨τ−zkuk −ψ,τwkv⟩+ ⟨ψ − τwkφ,τwkv⟩ → 0

The second term converges to zero since τwkφ→ ψ strongly by assumption. Similarly, since τwkv→ τwv
strongly, we conclude then

⟨τ−zkuk −ψ,τwv⟩ → 0

10



Compactness and Non-compactness MTH 849: PDE2

and since v is arbitrary the conclusion follows.

Next we define the opposite concept to equivalence.

Definition 2.19 (τ-orthogonality of cores). Two τ-cores φ⃗ and ψ⃗ are said to be τ-orthogonal, denoted

φ⃗
τ
⊥ ψ⃗, if their respective progressions y⃗ and z⃗ satisfies lim |yk − zk | = +∞.

The following lemma is immediate.

Lemma 2.20. Given φ⃗
τ
⊥ ψ⃗, and φ⃗′

τ≈ φ⃗ and ψ⃗′
τ≈ ψ⃗, then φ⃗′

τ
⊥ ψ⃗′ also. In other words, τ-orthogonality is a

well-defined notion for equivalence classes of τ-cores.

As seen in Example 2.14, we want to use this notion of cores to capture the situation where the
sequence u⃗ is made up of several coherent parts that are flying apart from each other. This motivates
the following definition.

Definition 2.21 (τ-profile). A τ-profile P is a set of pairwise τ-orthogonal equivalence classes of
τ-cores.

Definition 2.22 (Subordinance). We say that a τ-profile P is subordinate to a bounded sequence u⃗ of
H1 functions if, for every6 [φ⃗] ∈ P with progression yk and shape φ, we have τ−ykuk ⇀φ.

Denoting by P[u⃗] the set of all τ-profiles subordinate to u⃗, we can partial order the elements by
inclusion. An element P ∈ P[u⃗] is said to be maximal if it is an maximal element with respect to this
partial order.

In general, τ-profiles can contain many elements. For example, let y0 be a fixed non-vanishing vector.
Observe that if λ , ν ∈R, then setting zk = kλy0 and z′k = kνy0, we find that lim |zk − z′k | = +∞. So for
any fixed φ, the τ-cores φk = τzkφ and φ′k = τz′kφ are τ-orthogonal. This allows us to build a profile
with uncountably many elements.

It turns out, however, that if the profile is subordinate to a bounded sequence u⃗ of H1 functions, then
necessarily the profile has at most countably many elements, and that it enjoys a certain degree of
boundedness.

Lemma 2.23. Given a bounded sequence {uk} of H1 functions and P a subordinate τ-profile, then P is
countable and7 ∑

[φ⃗]∈P

∥[φ⃗]∥2H1 ≤ limsup∥uk∥2H1 .

Proof. We use the following fact that is deeply tied to the Hilbert space structure of H1: for any
sequence of functions fk ⇀ f ,

limsup∥fk − f ∥2 = limsup(∥fk∥2 − 2⟨f , fk⟩+ ∥f ∥2) = limsup∥fk∥2 − ∥f ∥2. (2.24)

6This definition holds regardless of choice of representative from the equivalence class, due to Lemma 2.18.
7Recall from Remark 2.17 that the norm of a τ-core is well-defined.

11
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(The liminf version appeared earlier in these notes too!) This says that in the limit, subtracting the
weak limit reduces the norm. Now let Pf ⊂ P be any finite subset. Consider

vk := uk −
∑

[φ⃗]∈Pf

τykφ;

here φ is the shape of φ⃗ and y⃗ its progression. Since Pf is finite, the sum is well-defined up to a

choice of representative from each equivalence class. If [ψ⃗] ∈ P \Pf , then by definition ψ⃗
τ
⊥ φ⃗ for every

[φ⃗] ∈ Pf . Therefore, if ψ⃗ has shape ψ and progression w⃗, we have

τ−wk


∑

[φ⃗]∈Pf

τykφ

 =
∑

[φ⃗]∈Pf

τyk−wkφ⇀ 0

as the sum is finite, and hence τ−wkvk ⇀ψ also. Thus we have, by (2.24),

0 ≤ limsup∥vk − τwkψ∥
2 = limsup∥vk∥2 − ∥ψ∥2.

Note that the conclusion 0 ≤ limsup∥vk∥2 − ∥ψ∥2 is reached regardless of the choice of representatives
from each equivalence class. By induction, this shows that for any finite subset Pf

limsup∥uk∥2 ≥
∑

[φ⃗]∈Pf

∥[φ⃗]∥2.

This uniform boundedness over finite sums implies then

1. P has at most countably many equivalence classes; and
2. the possibly infinite sum over the entire P is well-defined and also bounded by limsup∥uk∥2.

The Lemma 2.23 provides a powerful control on the sizes of the τ-profile subordinate to a sequence u⃗;
however, it does not guarantee that a formal sum of the form∑

[φ⃗]∈P

φk (2.25)

converges. (Here we are considering k as fixed, and that the sum is over all equivalence classes in P ,
with a representative arbitrarily selected for each class.) This is because that formally, the Hilbert
space norm of the above sum would look like∥∥∥∥∥∥∥∥∥

∑
[φ⃗]∈P

τyjφk

∥∥∥∥∥∥∥∥∥
2

=
∑

[φ⃗]∈P

∥∥∥∥[φ⃗]
∥∥∥∥2

+
∑

[ψ⃗],[φ⃗]∈P
[ψ⃗],[φ⃗]

⟨ψk ,φk⟩.

The first term, the diagonal sums, are controlled by Lemma 2.23. The second term, the cross sums,
may never-the-less be unbounded. At issue is the fundamental fact that on the infinite sequence space,

12
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the ℓ1 norm is strictly stronger than the ℓ2 norm, and so the bounds provided by Lemma 2.23 (as
opposed to one is given through an ℓ1 sum) is not enough for norm-convergence.

However, we see in some sense that “in the limit” as k ↗∞ the cross sums should drop out: this
is because the progressions for ψ⃗ and φ⃗ are supposed to diverge with their distance tending to
infinity, whenever we are looking at two representatives from distinct equivalence classes, due to the
τ-orthogonality assumption. So our expectations is that at least eventually (in the sense that k→∞) a
formal sum of the form (2.25) should be meaningful.

The following Selection Theorem makes precise this intuition. In fact we prove something stronger:
that there is a way to choose representatives in such a way that, for that specific choice of representatives,
the sum (2.25) converges in H1 for every k. Furthermore, this convergence is uniform in k.

Theorem 2.26 (Selection Theorem). Given a bounded sequence u⃗ in H1 and a τ-profile P subordinate to
it. Then there exists a choice of representatives [φ⃗]→ φ⃗ for each of the equivalence classes in P , such that

k 7→
∑

[φ⃗]∈P

φk

converges in H1 and uniformly in k; the latter means that for every ϵ > 0 there exists a co-finite subset
P ′ ⊆ P such that, with the specified choice of representatives,

sup
k

∥∥∥∥ ∑
[φ⃗]∈P ′

φk

∥∥∥∥
H1
< ϵ.

Remark 2.27. Note that the theorem is automatically true if P is finite, due to the comparability
of all ℓp norms in finite dimensions. At issue is only the situation when there are infinitely many
equivalence classes inside P .

Proof of Theorem 2.26. Our strategy is to start with an arbitrary choice of representatives for each
equivalence class. We then, in order, adjust each representative in such a way that the tail of their
corresponding progression remains unaffected; in this way the adjusted τ-core remains clearly in the
same equivalence class. We claim that an iterative adjustment of this sort can guarantee the required
summability.

For convenience, assume an initial choice of representatives have been made. Since P maybe assumed
to be countably infinite (the finite case is trivial), we enumerate the corresponding shapes as φα with
α ∈N, and the corresponding progressions as yαk . Note that since the profiles correspond to mutually

τ-orthogonal equivalence classes, we must have that whenever α , β that |yαk −y
β
k | → +∞. In particular,

this shows that fixing α , β, we have that

⟨τyαk φα , τyβk
φβ⟩ → 0. (2.28)

This equation allows us to make the following definition of a function J : N→N.

J(γ) = min

j ∈N :
∑
α,β
α,β≤γ

|⟨τyαk φα , τyβk
φβ⟩| ≤

1
γ
∀k ≥ j

. (2.29)

13



Compactness and Non-compactness MTH 849: PDE2

Notice by definition that J(γ) is increasing, and finite for each γ .

For each α, we will define a new progression {zαk } using the following iterative procedure: we will

assume that {zβk } has been defined for all β < α.

1. For k ≥ J(α), we will set zαk = yαk . This ensures τzαk φα
τ≈ τyαk φα .

2. For k < J(α), select zαk sufficiently far from z
β
k , for every β < α, to ensure that∑

β<α

|⟨τ
z
β
k
φβ , τzαk φα⟩| ≤

1
2α

2−α . (2.30)

It remains to verify that this choice ensures uniform convergence. We will show that for every ϵ > 0,
there exists some γ such that ∥∥∥∥∑

α>γ

τzαk φα

∥∥∥∥2

H1
< ϵ

holds for every k. Since we are working in a Hilbert space, we can write the left hand side as∑
α,β>γ

⟨τzαk φα , τzβk
φβ⟩ =

∑
α>γ

∥τzαk φα∥
2
H1 +

∑
α,β>γ
α,β

⟨τzαk φα , τzβk
φβ⟩.

We treat the diagonal and off-diagonal sums separately. For the diagonal sum, using Lemma 2.23, we
see that choosing γ sufficiently large can ensure that it is < 1

2ϵ.

For the off-diagonal sums, we will split it into two parts. Recall that for now we are considering k to
be fixed but arbitrary. For each α,β that occur in the sum, we can ask whether J(α) and J(β) is larger
than k or not. We treat separately the case where both J(α) ≤ k and J(β) ≤ k, and the case where at least
one is > k.

Where at least one is > k, we can without loss of generality assume α > β. And since J is increasing,
this guarantees that J(α) > k. Then the corresponding sum is (doubled to account for the case β > α)

2

∣∣∣∣∣∣ ∑
α>β>γ
J(α)>k

⟨τzαk φα , τzβk
φβ⟩

∣∣∣∣∣∣ ≤ 2
∑
α>β>γ
J(α)>k

∣∣∣∣∣⟨τzαk φα , τzβkφβ⟩
∣∣∣∣∣

≤ 2
∑

α:J(α)>k
α>γ

 ∑
β:β<α

∣∣∣∣∣⟨τzαk φα , τzβkφβ⟩
∣∣∣∣∣


the inner sum we can control using our earlier construction: by (2.30) we find

≤ 2
∑
α>γ
J(α)>k

1
2α

2−α ≤ 1
γ

2−γ .

When both J(α) and J(β) are ≤ k, we will apply the definition (2.29) for the function J . For each k,
define κ0 = sup{κ : J(κ) ≤ k}. (Note that κ0 may be∞; we will pretend it is finite for now, and hence κ0

14
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is in fact defined by a max and J(κ0) ≤ k also; the infinity case requires some minor modifications left
to the reader.) As k ≥ J(κ0), this means, since J is increasing, that α,β ≤ κ0 implies J(α), J(β) ≤ k. Since
κ0 is defined by a supremum, the reverse implication also hold. Hence the sum∑

α,β>γ
α,β

J(α),J(β)≤k

( formula ) =
∑

γ<α,β≤κ0
α,β

( formula ).

So applying (2.29) and noting that when k ≥ J(α), J(β) we have zαk = yαk and zβk = yβk by construction,
we conclude ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∑
α,β>γ
α,β

J(α),J(β)≤k

⟨τzαk φα , τzβk
φβ⟩

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
≤ 1
κ0
≤ 1
γ
.

Putting the two parts together, we have that the off-diagonal sums are bounded by 1
γ + 1

γ 2−γ ≤ 2
γ . So

choosing γ sufficiently large such that 2
γ <

1
2ϵ, we can combine with the estimates on the diagonal

term to prove uniform convergence.

Remark 2.31 (Notation). In view of the Selection Theorem, whenever P is a τ-profile subordinate to
some bounded sequence u⃗ of H1 functions, we will write

∑⃗
P for the sequence of H1 functions given

by the formal sum (2.25), which we can assume to converge due to a good choice of representatives.

Remark 2.32. We have actually proven more than we claimed. The argument above is based on
providing precise and decaying control on the size of the non-diagonal terms, and hence it in fact
shows that ∥∥∥(

∑
P )k∥2H1 →

∑
[φ⃗]∈P

∥[φ⃗]∥2H1 .

We conclude this section with a discussion of maximal τ-profiles.

Lemma 2.33. P is a maximal τ-profile subordinate to the sequence
∑⃗
P .

Proof. First, let [φ⃗] ∈ P , with shape φ and progression y⃗. We need to show that τ−y⃗
∑⃗
P ⇀φ. Using

the uniform convergence of the sum
∑⃗
P , we can find a finite subset P ′ ⊂ P containing [φ⃗] such

that ∥
∑⃗
P ′ −

∑⃗
P∥H1 is arbitrarily and uniformly small. The finite sum τ−y⃗

∑⃗
P ′ can be written as

φ+ τ−y⃗
∑⃗

(P ′ \ {[φ⃗]}). The due to the pair-wise τ-orthogonality of the classes in P , the latter sum can
be expanded into a finite sum of terms weakly convergent to 0. A standard argument shows then
τ−y⃗

∑⃗
P ⇀φ as desired, this shows that P is subordinate to

∑⃗
P .

Next we need to show that P is maximal. The argument is largely the same as the previous paragraph.
Fix y⃗ such that it would be orthogonal to the progressions of all classes in P . It suffices to show that
τ−y⃗

∑⃗
P ⇀ 0. As above, we first note that

∑⃗
P can be arbitrarily well-approximated by a finite sum∑⃗

P ′. For the finite sum we note that the orthogonality of y⃗ implies τ−y⃗
∑⃗
P ′ ⇀ 0, as a finite sum of

15
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terms each of which are weakly convergent to zero. Together a standard argument shows the desired
conclusion.

Corollary 2.34. Given a bounded sequence u⃗ in H1, and a subordinate τ-profile P . Then P is non-maximal
if and only if u⃗ −

∑⃗
P admits a non-empty subordinate τ-profile.

Proof. The forward implication follows from the previous Lemma: if P is non-maximal, there exists
a τ-core orthogonal to P , with shape φ and progression y⃗, such that τ−y⃗ u⃗ ⇀ φ. But by the previous

lemma we have τ−y⃗
∑⃗
P = 0. This shows that {[φ⃗]} ∈ P[u⃗ −

∑⃗
P ].

For the reverse implication, we need to show that if {[φ⃗]} ∈ P[u⃗ −
∑⃗
P ], then [φ⃗]

τ
⊥ P . Suppose not,

then there exists [ψ⃗] ∈ P such that, writing y⃗ and z⃗ the progressions of φ⃗ and ψ⃗ respectively, that y⃗ − z⃗
has a bounded subsequence indexed by ζ. Using Heine-Borel, by taking a further subsequence we
may assume (y⃗ − z⃗) ◦ ζ converges to w. By hypothesis, τ−z⃗(u⃗ −

∑⃗
P )⇀ 0. Then so does the subsequence

indexed by ζ. The strong convergence of y⃗ − z⃗ implies (similarly to the proof of Lemma 2.18) that(
τ−y⃗

(
u⃗ −

∑⃗
P
))
◦ζ ⇀ 0 also. On the other hand, that [φ⃗] is a τ-core of a τ-profile subordinate to u⃗−

∑⃗
P

implies that τ−y⃗(u⃗ −
∑⃗
P )⇀φ , 0. This gives a contradiction. And so {[φ⃗]} is τ-orthogonal to P , which

implies by the previous lemma that τ−y⃗
∑⃗
P ⇀ 0, and hence {[φ⃗]} ∈ P[u⃗] and so P is non-maximal.

§2.3 Concentration Compactness.— Intuitively, in view of the Selection Theorem, what we would
like is to start with a bounded sequence u⃗ of H1 functions, find a maximal τ-profile subordinate to u⃗,
and hope that u⃗ −

∑⃗
P is a sequence that τ-weakly converges to 0. This, however, is too naïve.

Example 2.35. Fix φ ∈ H1. Let u2n = 0 and u2n+1 = φ. Then u⃗ is bounded. Let y⃗ be an arbitrary
sequence. If a subsequence y⃗ ◦ ζ diverges to infinity, then the subsequence (τ−y⃗ u⃗) ◦ ζ ⇀ 0. So if τ−y⃗ u⃗
were to have a non-trivial weak limit, it must remain bounded. Let w be an accumulation point of the
“odd” subsequence of y⃗. Observe then

⟨τ−y⃗ u⃗,τ−wφ⟩

is both frequently zero and frequently near the value ∥φ∥2. And so we’ve actually shown that there
can be no τ-profiles subordinate to u⃗.

On the other hand, one also sees that ∥uk∥Lp ̸→ 0, and so by Theorem 2.11 we see that uk does not
τ-weakly converge to 0.

In a sense, this is not entirely unexpected: recall that Banach-Alaoglu Theorem only guarantees that
a bounded sequence has a weakly convergent subsequence. And indeed, in the example above, the
“even” subsequence is identically zero, and the “odd” subsequence has a maximal τ-profile with a
single element, the equivalence class of the constant sequence φk = φ.

What we want, then, is to incorporate considerations concerning subsequences into our discussion.
To facilitate this, we first make the following easy observation: If u⃗ is a bounded sequence with a
subordinate τ-profile P , then given any subsequence u⃗ ◦ ζ, the τ-profile Q := {[φ⃗ ◦ ζ] : [φ⃗] ∈ P } is
subordinate to u⃗ ◦ ζ. We will say that Q is the inherited τ-profile.

Definition 2.36. Given a bounded sequence u⃗, a subordinate τ-profile P is said to be hereditarily
maximal if for any subsequence u⃗ ◦ ζ, the inherited τ-profile is maximal in P[u⃗ ◦ ζ].
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The importance of this concept is captured in the following technical observations.

Lemma 2.37. If a bounded sequence u⃗ inH1 does not τ-weak converge to zero, then there exists a subsequence
u⃗ ◦ ζ admitting a subordinate non-empty τ-profile.

Proof of Lemma 2.37. By Proposition 2.4 we can find a sequence y⃗ of points such that τ−y⃗ u⃗ does not
weakly converge to zero. Noting that every subsequence of {τ−ykuk} is a bounded sequence in H1,
and so by Banach-Alaoglu has a weakly convergent sub-subsequence, we see that if every weakly
convergent subsequence were to weakly converge to 0, then τ−ykuk ⇀ 0 necessarily. Hence the
contrapositive of this argument implies that at least one weakly convergent subsequence converges to
something that is not the zero function. This provides the desired subsequence and its τ-profile.

Combining Lemma 2.37 with Corollary 2.34 we find:

Corollary 2.38. Given a bounded sequence u⃗ and a subordinate τ-profile P . We have u⃗ −
∑⃗
P τ
⇀ 0 if and

only if P is hereditarily maximal.

The main result in this section, and the main thrust of the concentration compactness argument, is the
following refinement of the classical Banach-Alaoglu Theorem.

Theorem 2.39. Given any bounded sequence u⃗, there exists a subsequence v⃗ = u⃗◦ζ and a τ-profile P ∈ P[v⃗]
that is hereditarily maximal.

Proof. The strategy is a simple refinement/diagonalization argument. At each stage, we keep a
subsequence v⃗ of u⃗ (initialized to u⃗), together with a τ-profile P (initialized to the empty set). If P is
not hereditarily maximal, then we can refine to a new subsequence v⃗′ for which the inherited τ-profile
can be enlarged to P ′ . Repeat now with (v⃗′ ,P ′) as the new (v⃗,P ).

If this process terminates in finitely many steps, we will have obtained a desired pair. The main
question is: “what happens when the process continues indefinitely?” Specifically: how can we extract
a limiting pair and guarantee that the limiting profile is hereditarily maximal?

To ensure this, we will add new τ-cores to our collection in a way that is roughly “decreasing in size”.
To help this, let’s define the following function: given a bounded sequence of H1 functions v⃗, let

w(v⃗) := sup
{
∥[φ⃗]∥ : {[φ⃗]} ∈ P[w⃗], w⃗ is a subseq. of v⃗

}
. (2.40)

Our algorithm for constructing v⃗ is as follows:

1. Start: set v⃗ = u⃗, P = ∅, and n = 0.
2. If: P is hereditarily maximal, return (v⃗,P ).

Else: increase n by 1 and continue.

3. Since P is not hereditarily maximal, by Corollary 2.34 we find w(v⃗ −
∑⃗
P ) > 0. There then exists

a subsequence of v⃗ −
∑⃗
P , indexed by ζ, and a corresponding {[φ⃗]} such that

∥[φ⃗]∥ ≥ 1
2
w(v⃗ −

∑⃗
P ).

We can ensure that ζ acts as the identity for the first n terms.
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4. Replace v⃗ by v⃗ ◦ ζ, and replace P first by its inherited profile on v⃗ ◦ ζ, and then enlarge it by
adding to it {[φ⃗]}.

5. Return to step 2 and repeat.

By the built-in diagonalization, in the case this algorithm runs indefinitely, since the first n terms of
all the sequences involved are fixed after the first n steps, we have well-defined limiting sequences. It
remains to show that this limiting sequence is hereditarily maximal.

To prove this, notice that the output of w is non-increasing from one iteration to the next (using
the same argument as the proof of Corollary 2.34). Next, notice that limsup∥vk − (

∑⃗
P )v∥H1 is also

decaying from iteration from the next (as a consequence of (2.24), and the fact that we are passing to
subsequences). So by Lemma 2.23, it must be the case that the output value of w tends to zero as the
number of interations tends to infinity. But this implies then that, for the limiting v⃗ and P , it holds
that w(v⃗ −

∑⃗
P ) = 0, which implies that the limiting P is hereditarily maximal.

§2.4 Optimizer for the Gagliardo-Nirenberg-Sobolev inequality.— Now we use Theorem 2.39 to
solve the minimization problem for the Sobolev inequality H1 ↪→ Lq on R

d , with d ≥ 3 and q ∈ (2, 2d
d−2 ).

As discussed before, we are interested then in finding a minimizer to the optimization problem

minimize ∥u∥H1 under the constraint ∥u∥Lq = 1.

Let u⃗ be a minimizing sequence. Applying Theorem 2.39 we may assume, after extracting a subse-
quence, that u⃗ has a hereditarily maximal subordinate τ-profile P . By Corollary 2.38, this means that

u⃗ −
∑⃗
P τ
⇀ 0, and hence by Theorem 2.11 we have that u⃗ −

∑⃗
P converges to 0 strongly in Lq. From this

we conclude that lim∥
∑⃗
P∥Lq = 1.

On the other hand, by Remark 2.32 we have that lim∥
∑⃗
P∥2

H1 =
∑

[φ⃗]∈P ∥[φ⃗]∥2
H1 . Applying Lemma 2.23

we get then lim∥
∑⃗
P∥2

H1 ≤ lim∥u⃗∥2
H1 . Since u⃗ is minimizing, this must be an equality. And hence

∑⃗
P

is itself a minimizing sequence.

What we will show next, is that in fact, P must have cardinality 1. If this were the case, let φ be the
shape of an representative of the unique element in P . As the ratio

∥
∑⃗
P∥H1

∥
∑⃗
P∥Lq

=
∥φ∥H1

∥φ∥Lq

is the constant sequence, for
∑⃗
P to be minimizing this would mean that this shape φ is itself an

optimizer for the Sobolev inequality.

We will establish finally that P contains exactly one element through several technical (and mostly
elementary) lemmas. For convenience we will denote C∗ by the optimum constant for the inequality
∥u∥Lq ≤ C∗∥u∥H1 .

Lemma 2.41. Given 0 < p < q <∞, and X a set of non-negative real numbers, then∑
x∈X

xp
1/p

≥

∑
x∈X

xq
1/q

,

whenever the sums are well-defined. Furthermore, equality is achieved only when X contains exactly one
non-zero element.
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Proof. By scaling homogeneity, we can assume that the right side equals 1. This means that each x ∈ X
is ≤ 1. And hence xp ≥ xq, with equality only when x = 1 or 0. Thus

∑
x∈X x

p ≥ 1 with equality only
when exactly one element is non-zero (and equals 1).

Lemma 2.42. Given real numbers x,y, and q ∈ (1,∞), there exists a universal constant Cq such that∣∣∣∣|x+ y|q − |x|q − |y|q
∣∣∣∣ ≤ Cq(|x|q−1|y|+ |y|q−1|x|).

Proof. The inequality is trivially true if any one of x,y,x + y is zero, with the constant Cq = 1. So we
will assume that none of the three vanish. By scaling homogeneity we can assume y = 1. So we are
down to proving ∣∣∣∣|1 + x|q − |x|q − 1

∣∣∣∣ ≤ Cq(|x|+ |x|q−1).

Consider the function

f (x) =
|1 + x|q − |x|q − 1
|x|+ |x|q−1 .

Near x = 0, the numerator is differentiable with derivative q. The denominator satisfies

lim
x→0+

|x|+ |x|q−1

x
=


1 q > 2
2 q = 2
+∞ q ∈ (1,2)

lim
x→0−

|x|+ |x|q−1

x
=


−1 q > 2
−2 q = 2
−∞ q ∈ (1,2)

So by L’Hôpital’s rule, f is bounded near the origin, and continuous away from the origin. Near
infinity, we have the numerator satisfies

|1 + x|q

|x|q
≈ 1 +

q

x
=⇒ |1 + x|q − |x|q − 1 ≈ q|x|q−2x.

This shows that f is bounded near infinity. By continuity the result follows.

Corollary 2.43. Given a finite set of real numbers X and q ∈ (1,∞), there exists a constant C dependent on
q and the cardinality of X such that∣∣∣∣∣∣∣

∣∣∣∣∑
x∈X

x
∣∣∣∣q −∑

x∈X
|x|q

∣∣∣∣∣∣∣ ≤ C ∑
x,y∈X
x,y

|x|q−1|y|.

Proof. We argue by induction using the previous lemma, and the observation that |x+y|q−1 ≤ C̃(|x|q−1 +
|y|q−1) for some C̃ depending on q.

Lemma 2.44. Given any finite subset P ′ ⊂ P , we have that lim∥
∑⃗
P ′∥qLq =

∑
[φ⃗]∈P ′ ∥[φ⃗]∥qLq .
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Proof. For convenience, index the shapes as φα and progressions as yαk for α ∈ {1, . . . ,N }. Then by
Corollary 2.43 we have∣∣∣∣∣∣∥∥∥∥∑

α

τyαk φα

∥∥∥∥q
Lq
−
∑
α

∥τyαk φα∥
q
Lq

∣∣∣∣∣∣ ≤ C
∫ ∑

α,β

|τyαk φα |
q−1|τ

y
β
k
φβ | dx.

The translation invariance of the Lebesgue measure implies

= C
∫ ∑

α,β

|φα |q−1|τ
y
β
k −y

α
k
φβ | dx.

When α , β, we have that |yβk − y
α
k | → +∞ and hence |τ

y
β
k −y

α
k
φβ |⇀ 0. As the sum is finite, this shows

that ∣∣∣∣∣∣∥∥∥∥∑
α

τyαk φα

∥∥∥∥q
Lq
−
∑
α

∥τyαk φα∥
q
Lq

∣∣∣∣∣∣→ 0.

Corollary 2.45. lim∥
∑⃗
P∥qLq =

∑
[φ⃗]∈P ∥[φ⃗]∥qLq .

Proof. By uniform convergence from the Selection Theorem 2.26 and Sobolev’s inequality, we have∑⃗
P also converges uniformly in Lq. So given any ϵ > 0, we can find a finite subset P ′ such that∣∣∣∣∥∑⃗P∥qLq − ∥∑⃗P ′∥qLq ∣∣∣∣ < ϵq.

By Lemma 2.23 and the Sobolev’s inequality, we can further ensure, by enlarging P ′ if necessary, that∑
[φ⃗]∈P\P ′

∥[φ⃗]∥2Lq < ϵ
2.

For ϵ < 1 this further ensures that ∑
[φ⃗]∈P\P ′

∥[φ⃗]∥qLq < ϵ
q.

By Lemma 2.44 we see that there exists k0 such that for all k ≥ k0∣∣∣∣∣∣∥∥∥∥ ∑
[φ⃗]∈P ′

φk

∥∥∥∥q
Lq
−

∑
[φ⃗]∈P ′

∥[φ⃗]∥qLq
∣∣∣∣∣∣ < ϵq.

Combining everything we find, if k ≥ k0,∣∣∣∣∣∣∥∥∥∥ ∑
[φ⃗]∈P

φk

∥∥∥∥q
Lq
−

∑
[φ⃗]∈P

∥[φ⃗]∥qLq
∣∣∣∣∣∣ < 3ϵq.

Since ϵ is arbitrary this shows our claim.
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Now we can show that P can contain only one element. Our earlier argument, combined with Corollary
2.45 and the Sobolev inequality shows that

1 = lim∥
∑⃗
P∥qLq =

∑
[φ⃗]∈P

∥[φ⃗]∥qLq ≤ C
q
∗
∑

[φ⃗]∈P

∥[φ⃗]∥q
H1

We also had
1
C2
∗

= lim∥
∑⃗
P∥2H1 =

∑
[φ⃗]∈P

∥[φ⃗]∥2H1 .

Combining, this shows  ∑
[φ⃗]∈P

∥[φ⃗]∥2H1


1/2

=
1
C∗
≤

 ∑
[φ⃗]∈P

∥[φ⃗]∥q
H1


1/q

and in view of Lemma 2.41 this means that P can only have a single element.

Remark 2.46. A similar argument to Remark 1.6 shows the following fact: let Ω ⊆R
d be such that

ΩC is compact with non-empty interior. Then there exists no optimizer to the Sobolev embedding
H1

0 (Ω) ↪→ Lq(Ω).

The reason is this: first, observe that for the same reason explained in Remark 1.6, the optimal
constants obey C∗,Ω ≤ C∗. We first show that they are in fact equal: let φ∗ be the optimizer for the R

d

embedding. Let χ be a smooth cut-off function that vanishes on ΩC and equals 1 slightly away from
it. Let yk = (k,0, . . . ,0). Then we have χτykφ∗ ∈H

1
0 (Ω), and it is easy to show that as functions on R

d ,

that χτykφ∗ − τykφ∗
τ
⇀ 0. Therefore we conclude that

lim
∥χτykφ∗∥H1

∥χτykφ∗∥Lq
=

1
C∗
.

and this shows that C∗,Ω ≥ C∗. And hence the two values equal.

But then any optimizer for the Ω problem will be an optimizer for the whole-space problem, and the
same strong maximum principle argument as in Remark 1.6 now shows that therefore optimizers for
the Ω problem cannot exist.

§3: Non-compactness from Scaling

I will not have time to discuss this in detail. But I want to provide you with a rough account of what
happens when studying the existence of the optimizer of the H1

0 ↪→ Lq embedding where q = 2d
d−2 .

For convenience we will work in R
d (the domain case is similar, just remove the translations). As

discussed already in class, for this particular Sobolev embedding there is another obstruction for
compactness, and that is scaling. For convenience we will equip H1

0 with the norm u 7→ ∥∇u∥L2 . This
is not entirely comparable to the full H1 norm, but is non-the-less a norm on the space. Most of the
ideas carry over to the full H1 norm case but with some additional technical “complications” that
make the ideas less transparent.
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Define the scaling operator σλu(x) = e(1−d/2)λu(xe−λ). What we find is that

∥∇σλu∥L2 = ∥∇u∥L2 and ∥u∥Lq = ∥σλu∥q.

And so if you take φ ∈ C∞0 (Rd) and let uk = σ±kφ, you will find that this sequence (with either the ±
sign) will not have any convergent subsequence in Lq, even though it is a bounded sequence in H1

0 .

This is a new phenomenon compared to the previous case where 2 < q < 2d
d−2 .

To handle this, in addition to modulate by translations, we need to also modulate by dilations (scaling).

1. We can define the notion of (σ,τ)-weak convergence for a sequence u⃗ in H1
0 , by requiring that

for any ϕ ∈H1
0 , that

limsup
k→∞

sup
y∈Rd ,λ∈R

∫
∇(uk −u) · ∇(τyσλϕ) = 0.

2. We can define cores and profiles now, with respect to both σ and τ : a (σ,τ)-core is a sequence of
the form τykσλkφ; its progression will be the pair (λk , yk) ∈Rd+1.

3. Equivalence of core is defined the same way, and orthogonality of cores is defined similarly (that
(λk −µk , yk − zk)→∞).

4. Under these definitions, the obvious replacements for Lemma 2.23 and the Selection Theorem
2.26 both still hold. Similarly, our main Theorem 2.39 also is true, with τ-profile replaced by
(σ,τ)-profile.

5. So, the entire concentration compactness machinery works with almost exactly the same proofs
except for one thing: and this is Theorem 2.11. The proof of this theorem used as an ingredient
the Rellich-Kondrachov Compactness Theorem, which is no longer available. The result, none-

the-less, is true: that uk
(σ,τ)
⇀ 0 ⇐⇒ ∥uk∥Lq → 0 for q = 2d

d−2 . We record a proof later in this
section.

6. Using these results, we see that again we can prove the existence of an optimizer for the Sobolev
embedding using pretty much the same argument given above.

To conclude this quick exposition, we record a proof of the replacement of Theorem 2.11.

Theorem 3.1. Let u⃗ be a bounded sequence of H1
0 (Rd) functions with the Hilbert space inner produce

⟨u,v⟩ =
∫
∇u · ∇v. Then

uk
(σ,τ)
⇀ 0 ⇐⇒ ∥uk∥

L
2d
d−2
→ 0.

We will write q = 2d
d−2 .

Proof of⇐. Let ϕ ∈ C∞0 (Rd) be arbitrary. Then

⟨τykσλku,ϕ⟩ = −
∫
τykσλkuk∆ϕ.

Using that ϕ ∈ C∞0 , it belongs to Lp where 1
p + 1

q = 1. If uk → 0 in Lq, so do τykσλku, and hence the RHS

tends to zero. Using that C∞0 is dense in H1
0 we obtain our conclusion, after appealing to the version

of Proposition 2.4 for the (σ,τ)-weak convergence.
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Proof of⇒. This direction is somewhat more challenging. We wish to follow an argument similar
to that of Theorem 2.11 through decomposing our integration, but now we have to also incorporate
“scaling” in addition to translations.

The rough idea:

1. First, cut-up each uk based on its output value so we can write uk =
∑
λuk,λ, where

uk,λ(x) =

uk(x) |uk(x)| ∈ [e(1−d/2)λ, e(1−d/2)(λ−1))
0 otherwise

2. Then decompose each uk,λ into pieces on cubes Qλ,µ; here µ indexes a collection of congruent
cubes that cover Rd . But instead of using unit cubes, we now use cubes of side length eλ.

3. Key idea: for ν ∈Z, let ũk = σνuk , then the corresponding piece ũk,λ = σνuk,λ−ν . So the scaling
allows us to move between “strata”. But doing so incurs a penalty from spatial rescaling, so the
cubes we use have to be adjusted accordingly. Notice that when function has large value, we use
a smaller cube and vice versa.

4. This means that we can follow a similar argument to Theorem 2.11 and identify the cube that
contains the most content of uk , and apply a (σ,τ) transformation to move that piece to the unit
cube at scale 0 to take advantage of the (σ,τ) weak convergence.

The technical implementation, however, is slightly trickier. This is because just building uk,λ as
indicated above will force none of the uk,λ pieces to beH1

0 functions (due to having jump discontinuity).
To account for this, we are going back to an idea you handled on Problem 7 of Problem Set 3.

Step 1: Start with Ξ̊ a smooth function on R, such that it vanishes when |x| ≥ e
d
2−1, and is identically

equal to 1 when |x| ≤ 1. Now, for λ ∈Z, define

Ξλ(x) = x
[
Ξ̊(xe(d/2−1)λ)− Ξ̊(xe(d/2−1)(λ+1))

]
.

We have then

•
∑
λΞλ(x) = x;

• |Ξλ(x)| ≤ e(d/2−1)(1−λ).
• there exists a universal constant C such that |Ξ′λ| ≤ C;
• Ξλ(x)Ξλ+µ(x) = 0 whenever µ ≥ 2.

So this allows us to write u =
∑
λΞλ(u). Additionally, we have the scaling relation

Ξλ(σνu) = σνΞλ−νu.

From Problem Set 3 #7 we find that each of the Ξλ(u) terms are individually in H1 ∩L∞.

Step 2: Since Ξλ(u) and Ξλ+µ(u) have disjoint support for µ ≥ 2, we see that

∥u∥qLq ≈
∑
λ

∥Ξλ(u)∥qLq .

Now, for each λ, we can smoothly partition R
d into cubes of side-lengths eλ. More precisely: we can

find a smooth function χ̊ such that χ̊ is supported on the cube [−1/4,5/4]d and equals 1 on the cube
[1/4,3/4]d . Furthermore, we require that

∑
y∈Zd τyχ̊ = 1. Let χλ,y , for λ ∈Z and y ∈Zd be

χλ,y(x) = τyχ̊(e−λx).
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Noting that each χλ,yχλ,z = 0 if |y − z|ℓ∞ > 1, we can further decompose Ξλ(u) into
∑
y χλ,yΞλ(u), and

the fact that the pieces are mostly disjoint allows us to say

∥u∥qLq ≈
∑
λ

∑
y

∥χλ,yΞλ(u)∥qLq .

Similarly, we also have
∥∇u∥2L2 ≈

∑
λ

∑
y

∥∇[χλ,yΞλ(u)]∥2L2 .

By construction if u ∈ H1
0 , then χλ,yΞλ(u) is an H1(Rd) function with compact support, since we

obtained it from smooth truncation. This means that we can apply the Gagliardo-Nirenberg-Sobolev
inequality to find that

∥χλ,yΞλ(u)∥Lq ≲ ∥∇χλ,yΞλ(u)∥L2

with a universal constant. Using that q > 2 we see that

∥u∥qLq ≲ ∥∇u∥
2
L2 sup

λ,y
∥χλ,yΞλ(u)∥q−2

Lq .

Therefore, in order to prove that uk → 0 in Lq under the given hypotheses, it suffices to show that under

the assumption of uk
(σ,τ)
⇀ 0, necessarily supλ,y ∥χλ,yΞλ(u)∥Lq → 0.

Step 3: Arguing similarly to Theorem 2.11 we find a sequence λk , yk such that

∥χλk ,ykΞλk (uk)∥Lq ≥
1
2

sup∥χλ,yΞλ(uk)∥Lq .

Replacing u⃗ by τ−y⃗σ−λ⃗u⃗, we can assume without loss of generality that yk = 0 and λk = 0 for all k. Now
I claim that

∥χ0,0Ξ0(uk)∥Lq → 0.

Using that the functions are uniformly bounded, by the Ξ cut-off, it suffices (using Lebesgue interpo-
lation) to show that

∥χ0,0Ξ0(uk)∥Lp → 0

for some p < q.

Now, let ζ be a smooth function with compact support equalling 1 on the support of χ0,0. I claim first
that ζuk → 0 in Lp. If this were the case, using that |Ξ0(uk)| ≤ |uk |, we then have ζΞ0(uk)→ 0 in Lp

also. The claim with χ0,0 follows immediately.

To show that ζuk → 0 in Lp, observe that since ∥∇uk∥L2 is uniformly bounded, that ∥uk∥Lq is also
uniformly bounded. Writing

∇(ζuk) = ∇ζuk + ζ∇uk
we get

∥∇(ζuk)∥L2 ≤ ∥ζ∥L∞∥∇uk∥L2 + ∥∇ζ∥Lq′ ∥uk∥Lq

is uniformly bounded. And hence ζuk ∈H1
0 (Ω′), where Ω′ is the interior of the support of ζ. Rellich-

Kondrachov together with Lemma 1.7 shows then for any p ∈ [1,q) that ζuk → 0 strongly in Lp.
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