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WILLIE WY WONG

The main purpose of these notes is to record an alternative proof of the follow-
ing theorem, which I learned from Pietro Majer1:

Theorem 1 (Main Theorem). Let [a,b] be a closed interval in R, and f : [a,b]→ R
be a continuous function that is differentiable at every x ∈ (a,b). Then ess sup(a,b) f

′ =
sup(a,b) f

′ .

For the benefit of the readers, we will recall the definition of the essential supre-
mum. This however requires some preliminary discussions, which I will defer
after explaining the motivation of these notes.

The proof that Majer give uses two concepts that are of the level of a “second
course” or “third course” in real analysis: one of which is the Vitali Covering Theo-
rem which are usually only covered in a course on measure theory of in harmonic
analysis; the second is the concept of the Lebesgue measure of a set. It turns out
that the theorem above can be explained using only the notion of an outer measure,
which is definitely approachable for students in a first course in real analysis (viz.
Lebesgue’s characterization of Riemann integrable functions, which talks about
discontinuity points being a “null set”). Given that the theorem can be under-
stood by such students, it is natural to ask whether a proof can be written using
more elementary language and techniques. It turns out that as Majer’s proof does
not use the full strength of the Vitali Theorem, only relying on a “finite approx-
imation” version, we can easily replace it using the fairly elementary notion of
compactness.

Next let us provide enough definitions for a first year analysis student to un-
derstand the theorem statement.

First, let O ⊆ R be an open set. If x ∈ O, we can define the connected component
of x as follows: let a = inf{y ∈ R | [y,x] ⊆O} and let b = sup{z ∈ R | [x,z] ⊆O}. Then
we see that (a,b) ⊆O and a,b <O, and hence (a,b) is the largest open interval of O
that contains x. That the rationals (a countable subset) is dense in R implies that
every connected component of O contains at least one rational, and hence we have
the well-known lemma

Lemma 2. If O ⊆ R is open, then O is the disjoint union of a countable (finite or
infinite) collection of open intervals.

This means that we have a well-defined notion of total length for open sets.
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Definition 3.
(1) Given −∞ < a < b <∞, the length of (a,b) is defined to be |(a,b)| = b − a.
(2) The length of an unbounded interval is defined to be +∞; the length of the

empty set is defined to be 0.
(3) Given an arbitrary open set O, we define its length by summing up the

lengths of its connected components. More precisely, denote by O the
countable set of disjoint open intervals such that ∪O = O, we define

|O| =
∑
I∈O
|I |

with the sum allowed to take values in [0,∞].

We can now describe sets that are “arbitrarily small” in the sense of length.

Definition 4 (Null sets). A subset N ⊆ R is said to be a null set if, for every ϵ > 0,
there exists an open set O ⊇N with |O| < ϵ.

And finally we can define the notion of the essential supremum.

Definition 5. Given f : [a,b]→ R, its essential supremum is defined to be

ess supf B inf
{
λ ∈ R

∣∣∣ f −1((λ,∞)) is a null set
}
.

1. Initial Reductions Toward A Proof

From Definition 5, it is clear that ess supg ≤ supg for any function g. So the
Main Theorem is proved provided that we can show, under the given hypotheses,
that supf ′ is not strictly larger than ess supf ′ . Now, set m = ess supf ′ , and let
us consider the function h(x) = f (x) −mx. Then we have h′(x) = f ′(x) −m. By
definition ess suph′ = ess supf ′ −m = 0, Our Theorem would follow if we can
show that 0 = ess suph′ ≥ suph′ .

At this point, we will apply the standard result

Proposition 6. If f : [a,b]→ R is continuous and differentiable in the interior of the
interval, then the following are equivalent:

(1) f ′(x) ≤ 0 for every x ∈ (a,b);
(2) f is a decreasing function.

Proof. To show (1) =⇒ (2), observe that if f is non-decreasing, there exists c < d
in its domain such that f (c) < f (d). But the mean value theorem for differentiable
functions implies that for some w ∈ (c,d) we have f ′(w) = f (d)−f (c)

d−c > 0.

To show (2) =⇒ (1), use that f ′(x) = limt→0
f (x+t)−f (x)

t by definition, and when f
is decreasing the quotient is always non-positive, so the limit is also non-positive.

□

Hence our Main Theorem will follow from

Theorem 7 (Reduced Theorem). If f : [a,b]→ R is continuous and differentiable in
the interior of the interval, and ess supf ′ ≤ 0, then f is a decreasing function.

We will prove Theorem 7 by contradiction, that is, we will show that the hy-
potheses of the theorem together with the assumption that f is non-decreasing
will lead to a contradiction. Again noting that f is non-decreasing can be captured
by the fact that there is some [c,d] ⊆ [a,b] such that f (c) < f (d). For convenience
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denote temporarily by m = f (d)−f (c)
d−c > 0 the slope of f through c and d. Taking

k : [c,d]→ R to be defined by k(x) = f (x)− 1
2mx. We have first that

k′(x) = f ′(x)− 1
2
m =⇒ ess supk′ ≤ −1

2
m < 0.

Additionally, we still have

k(d)− k(c) = f (d)− f (c)− 1
2
m(d − c) =

1
2
m(d − c) > 0.

And hence, Theorem 7 will follow from the following:

Theorem 8. There does not exist a function f : [a,b]→ R that satisfies simultaneously
• f is continuous and differentiable on (a,b), with ess supf ′ < 0,
• and f (a) < f (b).

2. Preliminary Lemmas

In this section we recall some basic facts about differentiable functions.

Proposition 9. If f is differentiable at x0 with f ′(x0) < 0, then there exists an ϵ > 0
such that

• every y ∈ (x0,x0 + ϵ) satisfies f (y) < f (x);
• every y ∈ (x0 − ϵ,x0) satisfies f (y) > f (x).

Proof. Let δ < 1
2 |f
′(x0)|, then the definition of differentiability means that there

exists ϵ > 0 such that on (x0−ϵ,x0+ϵ) we have |f (x)−f (x0)−f ′(x0)(x−x0)| < δ|x−x0|.
By the triangle inequality this gives

f ′(x0)(x − x0)− δ|x − x0| ≤ f (x)− f (x0) ≤ f ′(x0)(x − x0) + δ|x − x0|.
When x > x0, the latter inequality yields

f (x)− f (x0) ≤ 1
2
f ′(x0)(x − x0) < 0.

When x < x0, the former inequality gives

0 <
1
2
f ′(x0)(x − x0) ≤ f (x)− f (x0).

And the proposition follows. □

Remark 10. Note that after replacing ϵ by ϵ/2, we can also require that f (x0 + ϵ) <
f (x) < f (x0 − ϵ).

Proposition 11. Let f : [a,b] → R be differentiable at x0 ∈ (a,b). Then there exists
some ϵ > 0 and M > 0 such that for every c,d satisfying x0 − ϵ < c < x0 < d < x0 + ϵ we

have
∣∣∣∣ f (d)−f (c)

d−c

∣∣∣∣ <M.

Proof. Let M = |2f ′(x0)|. The definition of differentiability means that there exists
an ϵ > 0 such that on (x0−ϵ,x0 +ϵ) we have |f (x)−f (x0)−f ′(x0)(x−x0)| < |f ′(x0)||x−
x0|. This implies that |f (x)− f (x0)| <M |x−x0|. Since we have c < x0 < d we have by
triangle inequality

|f (d)− f (c)| ≤ |f (d)− f (x0)|+ |f (x0)− f (c)| <M
(
|d − x0|+ |x0 − c|

)
= M(d − c).

The claim follows. □
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3. Main Proof

The proof of Theorem 8 has two main steps.

3.1. Increase in Slope.

Lemma 12. Let λ > 1 be fixed. Suppose f : [a,b]→ R is continuous and differentiable
on (a,b), with ess supf ′ < 0, and suppose f (a) < f (b). Then there exists a subinterval
[c,d] ⊆ [a,b] such that

f (d)− f (c)
d − c

≥ λ
f (b)− f (a)

b − a
.

Proof. By hypothesis, there exists an open set O of R such that |O| < λ−1(b− a) and

O ⊇ {a,b} ∪ (f ′)−1((ess supf ′ ,∞)).

Since O is open, we have K = [a,b] \O is closed and bounded, hence compact.
Additionally, we know that x ∈ K implies f is differentiable at x with f ′(x) ≤
ess supf ′ < 0. So by Proposition 9 and Remark 10, for each x ∈ K there exists
ϵx > 0 such that every y ∈ (x,x + ϵx] satisfies f (y) < f (x) and every y ∈ [x − ϵx,x)
satisfies f (y) > f (x). By shrinking ϵx if necessary we can ensure x ± ϵx ∈ [a,b].
The intervals {(x − ϵx,x + ϵx)} form an open cover of K ; compactness implies the
existence of a finite subcover given by

{(xi − ϵi ,xi + ϵi)}i∈{1,...,N }.
We may assume that this subcover is minimal, in the sense that removing any of
the intervals will leave the remaining set no longer a covering of K . Thus we may
assume that whenever i < j, we have

xi < xj , xi − ϵi < xj − ϵj , xi + ϵi < xj + ϵj .

We next construct points ui ,vi using the following rules:
• u1 = x1 − ϵ1, vN = xN + ϵN .
• If xi + ϵi < xi+1 − ϵi+1, we set vi = xi + ϵi and ui+1 = xi+1 − ϵi+1.
• Else, choose some z ∈ [xi+1 − ϵi+1,xi + ϵi], and set ui+1 = vi = z.

At the end of this construction, we have the points

a ≤ u1 < x1 < v1 ≤ u2 < x2 < v2 ≤ u3 . . . < xi < vi ≤ ui+1 < xi+1 < . . . < xN < vN ≤ b.

with the property that
• ∪Ni=1[ui ,vi] covers K ;
• f (ui) > f (vi) for every i ∈ {1, . . . ,N }.

Observe that ÕB (a,b)\∪Ni=1[ui ,vi] is an open subset of O by definition, and we
can write

Õ = (a,u1)∪ (v1,u2)∪ · · · ∪ (vi ,ui+1)∪ · · · ∪ (vN−1,uN )∪ (vN ,b)

as a finite union of (possibly empty) open intervals, which we label I0, . . . , IN . Nec-
essarily we have

|Õ| ≤ |O| < λ−1(b − a).
Next we consider the telescoping sum

f (b)− f (a) = f (b)− f (vN ) +
( N∑
i=1

f (vi)− f (ui)︸              ︷︷              ︸
<0

+
N+1∑
i=1

f (ui+1)− f (vi)
)

+ f (u1)− f (a).
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So, in terms of the intervals I0, . . . , IN , we can write (technically we need to cull any
empty intervals from the list; those corresponds to situations where ui+1 = vi or
a = u1 or b = vN , in which case the corresponding contribution to the sum is null
anyway)

f (b)− f (a) <
N∑
i=0

f (sup Ii)− f (inf Ii).

Divide now by b − a we can write

f (b)− f (a)
b − a

<
|Õ|
b − a

·
N∑
i=0

f (sup Ii)− f (inf Ii)
|Ii |

· |Ii |
|Õ|

.

As
∑ |Ii |
|Õ| = 1, we can interpret the sum as a weighted average. Since we have a

lower bound for the weighted average, this is also a lower bound for at least one of
the terms. Hence we conclude that there is a (non-degenerate) interval Ij = [c,d]
such that

f (b)− f (a)
b − a

<
|Õ|
b − a

f (d)− f (c)
d − c

< λ−1 ·
f (d)− f (c)

d − c
as desired. □

3.2. Driving the Contradiction. Suppose a function satisfying the conditions of
Theorem 8 exists on the interval [a,b] = [a0,b0]. Denote by m = f (b)−f (a)

b−a > 0. Notice
that if [c,d] is the interval provided by Lemma 12, then f |[c,d] is another function
that satisfies the hypotheses of the Lemma itself. So we can apply the Lemma
repeatedly and generated a sequence of nested intervals

[a0,b0] ⊇ [a1,b1] ⊇ [a2,b2] . . .

such that

(13)
f (bi)− f (ai)

bi − ai
≥ λim.

As ai and bi are bounded and monotonic, the two sequences converge to a∗ and
b∗ respectively. We claim that a∗ = b∗: suppose not, then the continuity of f implies
that

lim
f (bi)− f (a0)

bi − ai
=
f (b∗)− f (a∗)

b∗ − a∗
<∞.

This contradicts (13).
On the other hand, if a∗ = b∗ = x0, by assumption we have f is differentiable at

x0. From Proposition 11 we extract some M,ϵ. As ai and bi converges to x0, they
are both eventually in (x0 − ϵ,x0 + ϵ). But this implies that

limsup
f (bi)− f (ai)

bi − ai
<M

which again contradicts (13).
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