
EULER, LaGRaNGE, NOETHER, EINSTEIN, aND

HILBERT

Willie WY Wong

Michigan State University

wongwwy@math.msu.edu

Guest Lecture, 國立清華大學
 /  / 



OVERVIEW

. Lagrangian Field Theory

. The Euler–Lagrange Equations

. Noether’s Theorem

. Einstein–Hilbert

. (time permitting) Going beyond
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Part I

LaGRaNGIaN FIELD THEORY



MODEL

⟩ A “field” is given by a function

Domain: manifold 𝑀
Codomain: vector space 𝑉

⟩ Example (Classical mechanics)

𝑀 = ℝ (time); 𝑉 = ℝ3 (positive of particle).

𝛾 ∶ 𝑀 → 𝑉: particle trajectory as a function of time. ♢
⟩ Example (Electromagnetism)

𝑀 = ℝ1,3 (Minkowski space-time); 𝑉 = ℝ3 (vector potential; temporal
gauge).

𝐴 ∶ 𝑀 → 𝑉: 𝜕𝑡𝐴 is electric field, ∇ × 𝐴 is magnetic field. ♢

Euler, Lagrange, Noether, Einstein, and Hilbert 



REMaRK ON GENERaLIZaTION

⟩ In the most general setting, instead of considering maps 𝑀 → 𝑉 we

can consider sections of fiber bundles (𝐹, 𝜋, 𝑀) (or even more generally
fibered manifolds).

Instead of bundles one may consider the case where we have maps

𝑀 → 𝑁 where 𝑁 is also a manifold. (E.g. harmonic maps)

In both cases the extra geometry necessitates introducing some addi-

tional language (linear connection, jet bundle) which obscures the main
topics of today.

⟩ By taking local coordinates / local trivializations we can reduce to the

case of 𝑀 → 𝑉. (Our operations today are all local.)

⟩ As vector space, we have the canonical trivialization 𝑇𝑉 ≅ 𝑉 × 𝑉,
simplifying the picture.

Euler, Lagrange, Noether, Einstein, and Hilbert 



LaGRaNGIaN FIELD THEORY

⟩ For convenience, fix volume form 𝑑𝑣𝑜𝑙 on 𝑀
⟩ Action Principle: physical solutions are (formal) critical points of an

action (Lagrangian).

⟩ Physics: action should depend on Kinetic and Potential energies;

⟹ depend on the value of the function and its first derivative.

⟩ Configuration Space: “all possible pointwise configurations of the field”

• First derivative: a section of 𝑇∗𝑀 ⊗ 𝑉 (𝑉-valued one-form)

• Field itself: a function 𝑀 → 𝑉
• Configuration space: (𝑇∗𝑀 ⊗ 𝑉) × 𝑉.
(Geometrically the configuration space should be the first jet bundle
𝑗1(𝑀, 𝑉); in our simplified setting the above is canonically isomorphic.)
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LaGRaNGIaN FIELD THEORY

⟩ Lagrangian Density: 𝐿 ∶ (𝑇∗𝑀 ⊗ 𝑉) × 𝑉 → ℝ.
⟩ Action: 𝜙 ∶ 𝑀 → 𝑉

𝒮[𝜙] = ∫ 𝐿(𝑝, 𝑑𝜙|𝑝⏟⏟⏟
Section of 𝑇∗𝑀⊗𝑉

, 𝜙𝑝) 𝑑𝑣𝑜𝑙

⟩ Remark

An alternative geometric formulation without fixing a 𝑑𝑣𝑜𝑙 is to let 𝐿 be

a bundle map from (𝑇∗𝑀 ⊗ 𝑉) × 𝑉 → Λtop𝑇∗𝑀 , so that the volume

form is incorporated as part of 𝐿. This has little practical effect. ♢
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Part II

EULER–LaGRaNGE EQUaTIONS



“FORMaL” ACTION

⟩ The action is often referred to as “formal”, as for actual solutions it is

generally the case that the integral ∫ 𝐿 𝑑𝑣𝑜𝑙 does not converge, due
to 𝑀 being often non-compact.

⟩ To formulate a variation problem, consider a one-parameter family of

compactly supported perturbations, and perform the integration only

on a compact set. The Euler–Lagrange Equations are still well-defined

even though the action is not.
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VaRIaTION

⟩ Let 𝑠 ↦ 𝜙(𝑠; –) be a one-parameter family of fields, that agree outside
a compact set 𝐾.

⟩ Since 𝜙 take values in a vector space, 𝜙̇(𝑠; –) ∶ 𝑀 → 𝑉 is well-defined,

as is its differential 𝑑𝜙̇.
⟩ 𝑑𝜙(𝑠; –) is a one parameter family of sections of 𝑇∗𝑀 ⊗ 𝑉; its 𝑠-
derivative is equal to 𝑑𝜙̇.

⟩ 𝜙(0; –) is a formal critical point of 𝒮 means

𝑑
𝑑𝑠𝒮[𝜙(𝑠; –)]∣

𝑠=0
= 0.

Euler, Lagrange, Noether, Einstein, and Hilbert 



VaRIaTION

⟩ Chain rule:

𝑑
𝑑𝑠𝐿(𝑝, 𝑑𝜙(𝑠; 𝑝), 𝜙(𝑠; 𝑝)) = 𝜕

𝜕𝜙𝐿(𝑝, 𝑑𝜙(𝑠; 𝑝), 𝜙(𝑠; 𝑝)) ⋅ 𝜙̇(𝑠; 𝑝)

+ 𝜕
𝜕(𝑑𝜙)𝐿(𝑝, 𝑑𝜙(𝑠; 𝑝), 𝜙(𝑠; 𝑝)) ⋅ 𝑑𝜙̇(𝑠; 𝑝).

⟩ The partials on the right are well-defined, since fixing a base point 𝑝,
the fiber of the configuration space (𝑇∗𝑀 ⊗ 𝑉) × 𝑉 is the vector space

𝑇∗𝑝𝑀 ⊗ 𝑉) × 𝑉, thanks to our simplifying assumptions.
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OBJECT TYPES

𝑑
𝑑𝑠𝐿(𝑝, 𝑑𝜙(𝑠; 𝑝), 𝜙(𝑠; 𝑝)) = 𝜕

𝜕𝜙𝐿(𝑝, 𝑑𝜙(𝑠; 𝑝), 𝜙(𝑠; 𝑝)) ⋅ 𝜙̇(𝑠; 𝑝)

+ 𝜕
𝜕(𝑑𝜙)𝐿(𝑝, 𝑑𝜙(𝑠; 𝑝), 𝜙(𝑠; 𝑝)) ⋅ 𝑑𝜙̇(𝑠; 𝑝).

⟩
𝜕

𝜕(𝑑𝜙)𝐿(𝑝, 𝑑𝜙(𝑠; 𝑝), 𝜙(𝑠; 𝑝)) can be acted on 𝑑𝜙̇(𝑠; 𝑝) to get a scalar,

so at 𝑝 is in 𝑇𝑝𝑀 ⊗ 𝑉∗.

In other words:
𝜕

𝜕(𝑑𝜙)𝐿 is a 𝑉∗-valued vector field.

⟩ Similarly
𝜕
𝜕𝜙𝐿(𝑝, 𝑑𝜙(𝑠; 𝑝), 𝜙(𝑠; 𝑝)) acts on 𝜙̇(𝑠; 𝑝), so belongs to 𝑉∗.
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LIE DIFFERENTIaTION

⟩ Let 𝑋 be a vector field, and 𝑓 a function, then

𝑋(𝑓) 𝑑𝑣𝑜𝑙 = ℒ𝑋(𝑓) 𝑑𝑣𝑜𝑙 = ℒ𝑋(𝑓 𝑑𝑣𝑜𝑙) − 𝑓 ℒ𝑋(𝑑𝑣𝑜𝑙)
⟩ ℒ𝑋(𝑓 𝑑𝑣𝑜𝑙) = 𝑑(𝑓 𝜄𝑋𝑑𝑣𝑜𝑙) is exact
⟩ 𝑓 ℒ𝑋(𝑑𝑣𝑜𝑙) = 𝑓 div(𝑋) 𝑑𝑣𝑜𝑙 by definition of divergence

⟩ Extends (by linearity) also to 𝑉, 𝑉∗ valued functions and vector fields:

( 𝜕
𝜕(𝑑𝜙)𝐿) ⋅ 𝑑𝜙̇ 𝑑𝑣𝑜𝑙 = 𝑑(𝜙̇ ⋅ 𝜄𝜕𝑑𝜙𝐿𝑑𝑣𝑜𝑙) − 𝜙̇ div( 𝜕

𝜕(𝑑𝜙)𝐿) 𝑑𝑣𝑜𝑙

Euler, Lagrange, Noether, Einstein, and Hilbert 



BaCK TO THE CRITICaL POINT

𝑑
𝑑𝑠𝒮[𝜙(𝑠; –)] = ∫

𝐾
𝑑(𝜙̇ ⋅ 𝜄𝜕𝑑𝜙𝐿𝑑𝑣𝑜𝑙)

+ ∫
𝐾

( 𝜕
𝜕𝜙𝐿 − div( 𝜕

𝜕(𝑑𝜙)𝐿)) ⋅ 𝜙̇ 𝑑𝑣𝑜𝑙

⟩ Recall: 𝐾 is compact, contains support of 𝜙̇.
• Integral converges.

• First integral vanishes (Stokes Theorem).

Euler, Lagrange, Noether, Einstein, and Hilbert 



EULER–LaGRaNGE EQUaTIONS

⟩ Suppose 𝜓 is such that for all -parameter variations 𝜙(𝑠; 𝑝) with

𝜙(0; 𝑝) = 𝜓(𝑝) we have 𝑑
𝑑𝑠𝒮[𝜙(𝑠; –)]∣

0
= 0.

⟩ ⟹ For all 𝜙̇ ∶ 𝑀 → 𝑉 with compact support

0 = ∫ ( 𝜕
𝜕𝜙𝐿(𝑝, 𝑑𝜓(𝑝), 𝜓(𝑝))−

div( 𝜕
𝜕(𝑑𝜙)𝐿(𝑝, 𝑑𝜓(𝑝), 𝜓(𝑝)))) ⋅ 𝜙̇ 𝑑𝑣𝑜𝑙

⟹ (pointwise everywhere)

0 = 𝜕
𝜕𝜙𝐿(𝑝, 𝑑𝜓(𝑝), 𝜓(𝑝)) − div( 𝜕

𝜕(𝑑𝜙)𝐿(𝑝, 𝑑𝜓(𝑝), 𝜓(𝑝)))

This 𝑉∗-valued system form the Euler–Lagrange equations.

Euler, Lagrange, Noether, Einstein, and Hilbert 



EXaMPLE: SCaLaR FIELD

⟩ Set 𝑉 = ℝ𝑑 with inner product ⟨–, –⟩.
⟩ Set 𝑀 = ℝ×ℝ𝑛 = {(𝑡, ⃗𝑥)}, standard volume form 𝑑𝑡∧𝑑𝑥1 ∧⋯∧𝑑𝑥𝑛.
⟩ Scalar field Langrangian density:

𝐿((𝑡, ⃗𝑥), 𝑑𝜙, 𝜙) = −⟨𝜕𝑡𝜙, 𝜕𝑡𝜙⟩ +
𝑛

∑
𝑖=1

⟨𝜕𝑥𝑖𝜙, 𝜕𝑥𝑖𝜙⟩.

⟩
𝜕
𝜕𝜙𝐿 = 0; and

𝜕
𝜕(𝑑𝜙)𝐿 ⋅ 𝑑𝜙̇ = −2⟨𝜕𝑡𝜙, 𝜕𝑡𝜙̇⟩ + 2

𝑛
∑
𝑖=1

⟨𝜕𝑥𝑖𝜙, 𝜕𝑥𝑖 𝜙̇⟩.

Euler, Lagrange, Noether, Einstein, and Hilbert 



EXaMPLE: SCaLaR FIELD

⟩ Euler–Lagrange Equations (after identifying 𝑉 = 𝑉∗ using inner prod-

uct)
𝜕
𝜕𝜙𝐿 − div( 𝜕

𝜕(𝑑𝜙)𝐿) = 2𝜕2𝑡𝑡𝜓 − 2△𝜓 = 0

(linear wave equation)

Euler, Lagrange, Noether, Einstein, and Hilbert 



SUMMaRY

⟩ Action principle: look for critical points of an action functional

⟩ No geometric structure required on the domain manifold 𝑀
⟩ Critical points ⟺ solve a geometric PDE, the Euler–Lagrange equa-

tion

Euler, Lagrange, Noether, Einstein, and Hilbert 



Part III

NOETHER’S THEOREM



OVERVIEW

⟩ Theorem (Noether; imprecise version)

If the action 𝒮 has a continuous symmetry, then every critical point

of 𝒮 (solution to Euler–Lagrange equations) has a corresponding
conservation law. ■

• What is a symmetry?

• What is a conservation law?

Euler, Lagrange, Noether, Einstein, and Hilbert 



SYMMETRY OF THE ACTION

⟩ Definition

A diffeomorphism Φ is a symmetry of the action 𝒮 if

∫
Φ(Ω)

𝐿(𝑝, 𝑑𝜙(𝑝), 𝜙(𝑝)) 𝑑𝑣𝑜𝑙 = ∫
Ω

𝐿(𝑝, Φ∗(𝑑𝜙)(𝑝), Φ∗(𝜙)(𝑝)) 𝑑𝑣𝑜𝑙

for every open Ω ⋐ 𝑀 , and every 𝜙 ∶ 𝑀 → 𝑉. ♢
⟩ Key point: Φ acts on the domain and 𝜙, but not on 𝐿 or 𝑑𝑣𝑜𝑙.
⟩ One can (dually) define a symmetry by holding the domain and 𝜙 fixed, but

moving 𝐿 𝑑𝑣𝑜𝑙: the latter is a bundle map from the configuration space (as a

vector bundle over 𝑀 ) to Λtop𝑇∗𝑀 . A diffeomorphism Φ ∶ 𝑀 → 𝑀 induces

a morphism of such maps; and we can define “symmetry of the action” as

diffeomorphisms that leave this bundle map invariant.
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INFINITESIMaL CONSEQUENCE

⟩ Now suppose Φ𝑠 is a one parameter family of symmetries of the action.

⟩
𝜕
𝜕𝑠Φ𝑠∣𝑠=0

is a vector field on 𝑀 , call it 𝑋.

⟩ Taking the 𝑠 derivative at 0 of

∫
Φ𝑠(Ω)

𝐿(𝑝, 𝑑𝜙(𝑝), 𝜙(𝑝)) 𝑑𝑣𝑜𝑙 = ∫
Ω

𝐿(𝑝, Φ∗𝑠(𝑑𝜙)(𝑝), Φ∗𝑠(𝜙)(𝑝)) 𝑑𝑣𝑜𝑙

yields

∫
𝜕Ω

𝐿(𝑝, 𝑑𝜙(𝑝), 𝜙(𝑝)) 𝜄𝑋𝑑𝑣𝑜𝑙 =

∫
Ω

𝑑
𝑑𝑠𝐿(𝑝, Φ∗𝑠(𝑑𝜙)(𝑝), Φ∗𝑠(𝜙)(𝑝)) 𝑑𝑣𝑜𝑙∣

𝑠=0
.
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INFINITESIMaL CONSEQUENCE

⟩ Φ∗𝑠(𝜙) is a one parameter family of fields, can apply slide 

∫
𝜕Ω

𝐿 𝜄𝑋𝑑𝑣𝑜𝑙 = ∫
Ω

𝑑(𝑋(𝜙) ⋅ 𝜄𝜕𝑑𝜙𝐿𝑑𝑣𝑜𝑙)

+ ∫
Ω

( 𝜕
𝜕𝜙𝐿 − div( 𝜕

𝜕(𝑑𝜙)𝐿)) ⋅ 𝑋(𝜙) 𝑑𝑣𝑜𝑙.

⟩ If 𝜙 is a critical point, then apply Euler–Lagrange to drop final integral.

⟩ Stokes’ Theorem ⟹

0 = ∫
Ω

𝑑(𝐿 𝜄𝑋𝑑𝑣𝑜𝑙 − 𝑋(𝜙) ⋅ 𝜄𝜕𝑑𝜙𝐿𝑑𝑣𝑜𝑙).

Holds for all Ω so integrand vanishes pointwise!

Euler, Lagrange, Noether, Einstein, and Hilbert 



NOETHER’S THEOREM

⟩ Theorem (Noether)

Suppose Φ𝑠 is a one-parameter family of symmetries of 𝒮, with
𝜕
𝜕𝑠Φ𝑠∣𝑠=0 = 𝑋. Given 𝜙 a critical point of 𝒮. Then the vector
field

(𝑋)𝑗[𝜙] ≔ 𝐿(𝑝, 𝑑𝜙, 𝜙)𝑋 − ( 𝜕
𝜕(𝑑𝜙)𝐿(𝑝, 𝑑𝜙, 𝜙)) ⋅ 𝑋𝜙

is divergence free. We call (𝑋)𝑗[𝜙] the Noether current for the vector
field 𝑋 and the solution 𝜙. ■

Euler, Lagrange, Noether, Einstein, and Hilbert 



CaNONICaL STRESS-ENERGY

⟩ The formula 𝑋 ↦ (𝑋)𝑗[𝜙] is clearly tensorial, define the canonical

stress-energy for a solution 𝜙 to be the type (1, 1) tensor field 𝑇can[𝜙]
given by

𝑇can[𝜙](𝑋) ≔ 𝐿(𝑝, 𝑑𝜙, 𝜙)𝑋 − ( 𝜕
𝜕(𝑑𝜙)𝐿(𝑝, 𝑑𝜙, 𝜙)) ⋅ 𝑋𝜙.

⟩ The canonical stress–energy tensor is well-defined for any field 𝜙.
Noether’s theorem says that when 𝜙 is a solution and when 𝑋 generates

a symmetry, we have 𝑇can[𝜙](𝑋) is conserved.

Euler, Lagrange, Noether, Einstein, and Hilbert 



Part IV

EINSTEIN–HILBERT



DEPENDENCE ON GEOMETRY

⟩ General relativity: domain is a Lorentzian manifold (𝑀, 𝑔)
Lagrangian depends on metric 𝑔 and the volume form is the metric

volume form.

⟩ Physical assumption: laws of physics independent of space-time location

(diffeomorphism invariance)

Lagrangian satisfies, for all diffeomorphism Φ we have

𝐿(Φ∗𝑔, Φ∗(𝑑𝜙), Φ∗𝜙)Φ∗𝑑𝑣𝑜𝑙 = Φ∗(𝐿(𝑔, 𝑑𝜙, 𝜙) 𝑑𝑣𝑜𝑙).

Euler, Lagrange, Noether, Einstein, and Hilbert 



SYMMETRY

⟩ Φ𝑠 is a one-parameter family of symmetries

∫
Φ𝑠(Ω)

𝐿(𝑔, 𝑑𝜙, 𝜙) 𝑑𝑣𝑜𝑙 = ∫
Ω

𝐿(𝑔, Φ∗𝑠(𝑑𝜙), Φ∗𝑠(𝜙)) 𝑑𝑣𝑜𝑙

⟩ Apply diffeomorphism invariance

∫
Ω

𝐿(Φ∗𝑠𝑔, Φ∗𝑠(𝑑𝜙), Φ∗𝑠𝜙) Φ∗𝑠(𝑑𝑣𝑜𝑙) = ∫
Ω

𝐿(𝑔, Φ∗𝑠(𝑑𝜙), Φ∗𝑠(𝜙)) 𝑑𝑣𝑜𝑙.

⟩ Sufficient (but not necessary condition) is Φ𝑠 acts as isometry of (𝑀, 𝑔).
⟩ Another possibility: Φ𝑠 acts as conformal isometry, and the scalar rescaling

factors cancel out. E.g. electromagnetism in +D.

Euler, Lagrange, Noether, Einstein, and Hilbert 



INFINITESIMaL CONSEQUENCE

⟩ Take 𝑠 derivative of
𝐿(Φ∗𝑠𝑔, 𝑑𝜙, 𝜙) Φ∗𝑠(𝑑𝑣𝑜𝑙) = 𝐿(𝑔, 𝑑𝜙, 𝜙) 𝑑𝑣𝑜𝑙

and evaluating at 𝑠 = 0 gets

𝜕
𝜕𝑔𝐿(𝑔, 𝑑𝜙, 𝜙)⋅𝜕𝑠(Φ∗𝑠𝑔)∣

𝑠=0
𝑑𝑣𝑜𝑙+𝐿(𝑔, 𝑑𝜙, 𝜙) 𝜕𝑠(Φ∗𝑠(𝑑𝑣𝑜𝑙))∣

𝑠=0
= 0.

(Here
𝜕
𝜕𝑔𝐿 is a (2, 0) tensor field on 𝑀 .)

⟩ Standard computation using Jacobi’s identity

𝜕𝑠(det𝐴) = det(𝐴)tr(𝐴−1𝜕𝑠𝐴)
yields

𝜕𝑠(Φ∗𝑠(𝑑𝑣𝑜𝑙))∣
𝑠=0

= 1
2 tr(𝑔

−1𝜕𝑠Φ∗𝑠(𝑔))∣
𝑠=0

𝑑𝑣𝑜𝑙.

Euler, Lagrange, Noether, Einstein, and Hilbert 



INFINITESIMaL CONSEQUENCE

⟩ Summarize: if 𝜕𝑠Φ𝑠∣𝑠=0 = 𝑋, then symmetry implies

( 𝜕
𝜕𝑔𝐿(𝑔, 𝑑𝜙, 𝜙) + 1

2𝐿(𝑔, 𝑑𝜙, 𝜙)𝑔−1
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑇EH[𝑔,𝜙]

) ⋅ ℒ𝑋𝑔 = 0.

⟩ The type-(2, 0) Einstein–Hilbert stress-energy tensor 𝑇𝐸𝐻[𝑔, 𝜙] is di-
vergence free if 𝑔 is a critical point of the Einstein–Hilbert functional

𝒮EH = ∫ 𝑅 + 𝐿(𝑔, 𝑑𝜙, 𝜙) 𝑑𝑣𝑜𝑙

• 𝑅 is scalar curvature of 𝑔
• 𝜙 can be any fixed field
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EINSTEIN–HILBERT CURRENT

⟩ Since 𝑇EH[𝑔, 𝜙] is symmetric, if 𝑔 is critical point

𝑇EH[𝑔, 𝜙] ⋅ ℒ𝑋𝑔 = 2div(𝑇𝐸𝐻[𝑔, 𝜙] ⋅ 𝑋 ♭)

so the Einstein–Hilbert current vector field 𝑇EH[𝑔, 𝜙]⋅𝑋 ♭ is divergence
free: provides another conservation law.
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Part V

NOETHER VERSUS EINSTEIN–HILBERT



STRESS-ENERGIES aND SYMMETRIES

⟩ General relativity setting: (𝑀, 𝑔, 𝜙)
Total action

𝒮 = ∫ 𝑅 + 𝐿(𝑔, 𝑑𝜙, 𝜙) 𝑑𝑣𝑜𝑙
⟩ Two stress-energy tensors:

• Type-(1, 1) canonical stress 𝑇can / variation of 𝜙
• Type-(2, 0) Einstein–Hilbert stress 𝑇EH / variation of 𝑔

⟩ Assume vector field 𝑋 generates isometries.

𝑔 arbitrary, 𝜙 critical: 𝑇𝑐𝑎𝑛 ⋅ 𝑋 is divergence free

𝑔 critical, 𝜙 arbitrary: 𝑇EH ⋅ 𝑋 ♭ is divergence free
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COMPaRISON

⟩ When both 𝑔 and 𝜙 critical, are the two related?

𝑇can(𝑋) = 𝐿𝑋 − ( 𝜕
𝜕(𝑑𝜙)𝐿) ⋅ 𝑋𝜙

2𝑇EH ⋅ 𝑋 ♭ = 𝐿𝑋 + 2( 𝜕
𝜕𝑔𝐿) ⋅ 𝑋 ♭

⟩ The two are equal if

2 𝜕
𝜕𝑔𝐿 + 𝜕

𝜕(𝑑𝜙)𝐿 ⊗ ∇𝜙 = 0.

⟩ Sufficient condition: 𝐿 = 𝐿(𝑔−1(𝑑𝜙, 𝑑𝜙), 𝜙)
Covers many common field theories
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Part VI

APPLICaTIONS TO HYPERBOLIC PDES



FINITE SPEED OF PROPaGaTION

⟩ Suppose 𝑋 is a symmetry, and Ω is a set such that 𝜕Ω = Γ− + Γ+,
such that the integral

∫
Γ±

𝜄(𝑋)𝑗 𝑑𝑣𝑜𝑙

is definite (only vanishes when 𝜙 ≡ 0).
Then 𝜙|Γ− = 0 implies 𝜙|Γ+ = 0.

⟩ Such hypotheses are satisfied when the Euler–Lagrange equations are

hyperbolic, and this is the prototype for “finite speed of propagation”

⟩ Observation going back to Leray:

Same can be said even if 𝑋 is not a symmetry (using Gronwall-type

arguments).

Euler, Lagrange, Noether, Einstein, and Hilbert 



ENERGY ESTIMaTES

⟩ As the stress energy tensors depend only on 𝑑𝜙 and 𝜙, its coercivity
can at most control 𝜙 in 𝑊1,𝑝(Γ±).

⟩ How to provide higher order 𝑊𝑘,𝑝 control?
⟶ required for proving existence of solutions to the initial value prob-

lem.

⟩ “Reverse engineer” the connection between the Euler–Lagrange equa-

tion and the canonical stress tensor.

Can be made precise by linearization around the solution.
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SIMPLEST CaSE

⟩ Consider 𝑀 = ℝ𝑛. Suppose Lagrangian

𝐿 = 𝐿((𝑝, 𝑑𝜙) = ℎ𝛼𝛽
𝐴𝐵(𝑝)𝜕𝛼𝜙𝐴𝜕𝛽𝜙𝐵

then Euler–Lagrange equation has principal part

ℎ𝛼𝛽
𝐴𝐵(𝑝)𝜕2

𝛼𝛽𝜙𝐵 + … = 0.
And the canonical stress tensor appears as

𝑇can[𝑑𝜙]𝜇𝜈 = ℎ𝛼𝛽
𝐴𝐵𝜕𝛼𝜙𝐴𝜕𝛽𝜙𝐵𝛿𝜇𝜈 − ℎ𝛼𝜇

𝐴𝐵𝜕𝛼𝜙𝐴𝜕𝜈𝜙𝐵.
⟩ Call the mapping from the coefficients

(ℎ𝛼𝛽
𝐴𝐵 , 𝑑𝜙) → 𝑇can[𝑑𝜙]

the Noether transform.
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NOETHER TRaNSFORM

⟩ We can apply the Noether transform to PDEs that are not necessarily
Lagrangian. If 𝜙 solves

ℎ𝛼𝛽
𝐴𝐵(𝑝)𝜕2

𝛼𝛽𝜙𝐵 + … = 0
then forming 𝑇can from the Noether transform gives

div𝑇can = 𝑂(𝜙, 𝑑𝜙)
which allows us to use Leray’s argument.

⟩ Christodoulou calls those ℎ𝛼𝛽
𝐴𝐵 that has a Noether transform with co-

ercivity properties (relative to a vector field 𝑋 and a hypersurface Σ)
regularly hyperbolic.
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HIGHER ORDER VERSUS FIRST ORDER ENERGIES

⟩ Assume 𝐿 = 𝐿(𝑝, 𝑑𝜙). Euler–Lagrange is

div( 𝜕
𝜕(𝑑𝜙)𝐿(𝑥, 𝑑𝜙)) = 0.

Take a derivative, we find

div( 𝜕2

𝜕(𝑑𝜙)2 𝐿(𝑥, 𝑑𝜙)𝜕(𝑑𝜙)) + … = 0

so 𝜕𝜙 solves a second order PDE with

ℎ𝛼𝛽
𝐴𝐵(𝑥, 𝑑𝜙) = 𝜕2

𝜕(𝜕𝛼𝜙𝐴)𝜕(𝜕𝛽𝜙𝐵)𝐿(𝑥, 𝑑𝜙).
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HIGHER ORDER VERSUS FIRST ORDER ENERGIES

⟩ Key observation: in general, the canonical stress energy of 𝐿 is not
equal to the Noether transform of (ℎ𝛼𝛽

𝐴𝐵 , 𝑑𝜙).
⟩ (Equal when 𝐿 is quadratic in 𝑑𝜙.)
⟩ The canonical stress energy is “better behaved” algebraically because

it captures special cancellations from the Lagrangian structure at the

lowest derivative level.

⟩ For understanding the existence theory of hyperbolic PDEs, these can-

cellations are “too nice” and “non generic”. The energy derived from

taking the Noether transform of the principal symbol should be used

instead.
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Thank you for your attention!


