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OVERVIEW

Lagrangian Field Theory

The Euler—Lagrange Equations
Noether’'s Theorem
Einstein—Hilbert

(time permitting) Going beyond

U s o —

Euler, Lagrange, Noether, Einstein, and Hilbert



Part |

LAGRANGIAN FIELD THEORY



MobEL

y A “field” is given by a function
Domain: manifold M
Codomain: vector space V

2y Example (Classical mechanics)
M = R (time); V = R3 (positive of particle).
y : M — V: particle trajectory as a function of time. O

3y Example (Electromagnetism)
M = R"3 (Minkowski space-time); V = [R® (vector potential; temporal

gauge).
A: M — V: 0,Ais electric field, V X A is magnetic field. O

rs o=
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ReMARK ON GENERALIZATION

4y In the most general setting, instead of considering maps M — V we
can consider sections of fiber bundles (F, , M) (or even more generally
fibered manifolds).
Instead of bundles one may consider the case where we have maps
M — N where N is also a manifold. (E.g. harmonic maps)
In both cases the extra geometry necessitates introducing some addi-
tional language (linear connection, jet bundle) which obscures the main
topics of today.

sy By taking local coordinates / local trivializations we can reduce to the
case of M — V. (Our operations today are all local.)

¢y As vector space, we have the canonical trivialization TV = V X V,
simplifying the picture.

rw
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LAcGraNGIAN FiELD THEORY

7 For convenience, fix volume form dvol on M

&) Action Principle: physical solutions are (formal) critical points of an
action (Lagrangian).
sy Physics: action should depend on Kinetic and Potential energies;
—> depend on the value of the function and its first derivative.
0y Configuration Space: "all possible pointwise configurations of the field"
® First derivative: a section of T"M ® V (V-valued one-form)
® Field itself: a function M — V
* Configuration space: (T"M @ V) x V.
(Geometrically the configuration space should be the first jet bundle
j'(M,V); in our simplified setting the above is canonically isomorphic.)

rs o=
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LAcGraNGIAN FiELD THEORY

1 Lagrangian Density: L: (T'"M ® V) x V — R.
) Action: ¢ : M — V

S[¢] = /L(P: d¢|p,¢p) dvol

Section of T"M®V

13) Remark
An alternative geometric formulation without fixing a dvol is to let L be
a bundle map from (T*M ® V) x V — APT*M, so that the volume
form is incorporated as part of L. This has little practical effect. O

rw
[ Euler, Lagrange, Noether, Einstein, and Hilbert 6



Part I/

EuLER—LAGRANGE EQuUATIONS



"FormaL"” AcTiON

14y The action is often referred to as “formal”, as for actual solutions it is
generally the case that the integral [ L dvol does not converge, due
to M being often non-compact.

i5) To formulate a variation problem, consider a one-parameter family of
compactly supported perturbations, and perform the integration only
on a compact set. The Euler—Lagrange Equations are still well-defined
even though the action is not.

rs o=
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VARIATION

16y Let s — ¢(s; —) be a one-parameter family of fields, that agree outside
a compact set K.

7y Since ¢ take values in a vector space, q;(s; =) : M — Vis well-defined,
as is its differential d¢.

sy dgp(s;—) is a one parameter family of sections of T"M ® V/; its s-
derivative is equal to d¢.

19y ¢(0; =) is a formal critical point of S means

d
%S[gb(s,—)] e = (0.

rw
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VARIATION

20) Chain rule:
fo) o
%L(P, d9(s: p). $(s: P)) = 35L(p.de(s: p). ¢(s: p)) - $(s: P)

+ @L(p, di(s: p), $(s: p)) - di(s: p).

2y The partials on the right are well-defined, since fixing a base point p,
the fiber of the configuration space (T°M ® V') x V is the vector space
T;M ® V) X V, thanks to our simplifying assumptions.

rw
[ Euler, Lagrange, Noether, Einstein, and Hilbert (0]



OBJECT TYPES

Z5LUP (5 ), 8(5: ) = 35L(p.d9(s: ). 9(s: ) - s )

a(d¢)L(p di(s: p). $(s: p)) - d(s: p).

a(dqb)L(p d¢(s; p), ¢(s;: p)) can be acted on dqb(s p) to get a scalar,
so at p is in TPM®V .

fo)
In other words: ——L is a V*-valued vector field.

o(d¢)
23 Similarly ;—¢L(p, do(s; p), ¢(s; p)) acts on 4)(5; p), so belongs to V*.

"Q‘ Euler, Lagrange, Noether, Einstein, and Hilbert 11



Lie DIFFERENTIATION

24y Let X be a vector field, and f a function, then

X(f) dvol = Ly (f) dvol = Ly (f dvol) — f Lx(dvol)

25) Ly (f dvol) = d(f 1ydvol) is exact
26 f L x(dvol) = f div(X) dvol by definition of divergence

o7y Extends (by linearity) also to V, V* valued functions and vector fields:

(%L) dg avol = d($ 15, dvol ) — ¢ dlv(a(d¢) ) dvol

rw
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Back To THE CriTicaL PoinT

%S[qb(s; -)] = /Kd(qS . zéd¢Ldvol)

+/ (a¢ dlv(a(d¢) )) - ¢ avol

28y Recall: K is compact, contains support of ¢.
® |ntegral converges.
® First integral vanishes (Stokes Theorem).

rw
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EuLer—LAGrRANGE EqQUATIONS

29) Suppose  is such that for all l-parameter variations ¢(s; p) with
d
#(0; p) = w(p) we have ;S[qﬁ(s;—)] . = @,

s = For all ¢ : M — V with compact support
0= [ (ZL(p.dy(p). y(p))~
= | (5gtlp.dw(p). wip

div( @L(p, dw(p). w(p))) ) - ¢ dvol

=> (pointwise everywhere)

0= :—¢L(p, dy(p), w(p)) — div(%L(/& dy(p). (p)))

This V*-valued system form the Euler—Lagrange equations.

ry
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EXAMPLE: SCALAR FIELD

sy Set V = [R? with inner product ==
) Set M = Rx R" = {(t,X)}, standard volume form dt Adx; A --- Adx,,.
33) Scalar field Langrangian density:

L((t.%),d, §) = —(3,6.0,8) + > (3,69, $).
i=1

34) ;—¢L = 0; and

d : . n ,
WL cdp = —2(0,4,0,¢) + 2 ;(axiqg, 3, 9)-

rw
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EXAMPLE: SCALAR FIELD

35y Euler—Lagrange Equations (after identifying V = V" using inner prod-
uct)
o)

o¢

(linear wave equation)

)

—L— dlv(é(dq[))

) =208y — 289 =0

rw
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SUMMARY

s6) Action principle: look for critical points of an action functional
sny No geometric structure required on the domain manifold M

s8) Critical points <= solve a geometric PDE, the Euler—Lagrange equa-
tion

rs o=
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Part 111

NOETHER'S THEOREM



OVERVIEW

39) Theorem (Noether; imprecise version)
If the action S has a continuous symmetry, then every critical point
of S (solution to Euler—Lagronge equations) has o corresponding
conservation low. |

® What is a symmetry?
® \What is a conservation law?

rs o=
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SYMMETRY OF THE ACTION

0y Definition
A diffeomorphism ® is o symmetry of the action S if

| Lp.a(p).4(p)) dvol = [ L(p. 0" (@)(p). O’ ()(p)) dvol
(Q) Q

for every open Q € M, and every ¢ : M — V. O

4y Key point: @ acts on the domain and ¢, but not on L or dvol.

42) One can (dually) define a symmetry by holding the domain and ¢ fixed, but
moving L dvol: the latter is a bundle map from the configuration space (as a
vector bundle over M) to A®PT*M. A diffeomorphism ® : M — M induces
a morphism of such maps; and we can define "symmetry of the action” as
diffeomorphisms that leave this bundle map invariant.
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INFINITESIMAL CONSEQUENCE

43) Now suppose @, is a one parameter family of symmetries of the action.

fe)
sy —D

os

is a vector field on M, call it X.
=0

45y Taking the s derivative at O of

S

[ Lp.a(p). 8(p)) dvol = | L(p.0:(ag)(p), 0:($)(p)) dvol
() Q

yields

| Lp.d8(p). 8(p)) 1xavol =
oQ

/ diL(p' DX (dp)(p), DL ($)(p)) dvol| .
@) o

rw
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INFINITESIMAL CONSEQUENCE

1) D7 (¢) is a one parameter family of fields, can apply slide 13

/ L 1ydvol = / d(X((;b) "Iy Lolvol)
5Q Q ¢

+/(é¢ dlv(a(d¢)L))~X(¢)dvol.

7 If ¢ is a critical point, then apply Euler—Lagrange to drop final integral.
s8) Stokes’ Theorem —>

0= / d(L 1ydvol — X(¢) - zéd¢Ldvol>.
Q

Holds for all Q so integrand vanishes pointwisel

rw
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NOETHER's THEOREM

19 Theorem (Noether)
Suppose @, is a one-parameter family of symmetries of S, with
)
ECDS s=0
field

= X. Given ¢ a critical point of S. Then the vector

XD j[¢] = L(p.dd, )X — ( 2 | (pdi, $)) - X¢
3(dg)

is divergence free. We call 9 j[¢] the Noether current for the vector
field X and the solution ¢. |

rw
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CanonNicAL STress-ENERGY

sop The formula X — (X)j[qS] is clearly tensorial, define the canonical
stress-energy for a solution ¢ to be the type (1,1) tensor field T,,[$]
given by

Teanl®1(X) = L(p.d¢. $)X — (@L(p, dg. ¢)) - X¢.

sy The canonical stress—energy tensor is well-defined for any field ¢.
Noether’s theorem says that when ¢ is a solution and when X generates

a symmetry, we have T, [¢](X) is conserved.

rw
[ Euler, Lagrange, Noether, Einstein, and Hilbert 24



Part [V

EiNsTEIN—HILBERT



DEePENDENCE ON GEOMETRY

s2) General relativity: domain is a Lorentzian manifold (M, g)

Lagrangian depends on metric g and the volume form is the metric
volume form.

s3) Physical assumption: laws of physics independent of space-time location
(diffeomorphism invariance)
Lagrangian satisfies, for all diffeomorphism ® we have

L(®*g, ®*(d¢), *¢)D*dvol = ©*(L(g, dé, ¢) dvol).
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SYMMETRY

sy O, is a one-parameter family of symmetries
| 1g.dp.) avol = | Lo, 01(d9).05(8)) avol
®4(Q) Q
ssy Apply diffeomorphism invariance
| L(@2g.0:(d8). ©:9) @i(avol) = | L(5.0:(a),0(4)) dvol.
9} Q
ss) Sufficient (but not necessary condition) is @ acts as isometry of (M, g).

s7) Another possibility: @, acts as conformal isometry, and the scalar rescaling
factors cancel out. E.g. electromagnetism in 1+3D.

rs o=
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INFINITESIMAL CONSEQUENCE

se) Take s derivative of
L(®:g,d¢, ¢) ®;(dvol) = L(g,de, ¢) dvol

and evaluating at s = O gets
o) o *
551(0.d9.9)-0,(®;g)| __ dvol+L(g.dp,¢)o,(®j(dvoD))| =0

GES aiL is a (2,0) tensor field on M)
g

s9y Standard computation using Jacobi's identity
d,(det A) = det(A)tr(A™15.A)
yields

* 1 —_ *
O (®i(dvol))| = 7tr(g B.®X(g))|  dvol.
s=0 =0

rw
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INFINITESIMAL CONSEQUENCE

s0p Summarize: if 6S<Dsls=o = X, then symmetry implies

d 1
( l@L(g, d$. ¢) + 5L(9.d¢, ¢)9‘11 ) Lxg=0

Tenlg.¢]

sy The type-(2,0) Einstein—Hilbert stress-energy tensor Tgy[g, ¢] is di-
vergence free if g is a critical point of the Einstein—Hilbert functional

Sgy = /R + L(g,d¢, ¢) dvol

® R is scalar curvature of g
® ¢ can be any fixed field

rw
[ Euler, Lagrange, Noether, Einstein, and Hilbert 29



EiNnsTEIN—HILBERT CURRENT

s2) Since Tgnlg, ¢] is symmetric, if g is critical point
Tenlg ¢]- Lxg = 2diV(TEH[9: ¢]- Xb)

so the Einstein—Hilbert current vector field Tgy[g, ¢ XPis divergence
free: provides another conservation law.

rs o=
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Part V

NOETHER VERSUS EINSTEIN—HILBERT



STRESS-ENERGIES AND SYMMETRIES

s3) General relativity setting: (M, g, ¢)
Total action

S = /R + L(g,d¢, ¢) dvol

¢ty Two stress-energy tensors:
® Type-(1,1) canonical stress T, / variation of ¢
® Type-(2,0) Einstein—Hilbert stress Ty / variation of g

ss) Assume vector field X generates isometries.
g arbitrary, ¢ critical: T__ - X is divergence free

can

g critical, ¢ arbitrary: Ty - X is divergence free

r’”
[ Euler, Lagrange, Noether, Einstein, and Hilbert
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COMPARISON

¢y When both g and ¢ critical, are the two related?

Tcan(X) = L)X¢

(a<d¢>
2Ten - XP = LX + 2(@@ L

¢ny The two are equal if

a d
3oL T 3Eg- @ V=0

¢8) Sufficient condition: L = L(g_1(d<;b, deg), ¢)
Covers many common field theories

rw
[ Euler, Lagrange, Noether, Einstein, and Hilbert

33



Part VI

AppLicaTIONS TO HypPerBoLIc PDEs



FINITE SPEED OF PROPAGATION

s9) Suppose X is a symmetry, and Q is a set such that 0Q = _ + T,

such that the integral
/ l(X)j dvol
r

+
is definite (only vanishes when ¢ = 0).
Then ¢|- = O implies ¢|F+ = 0.

70y Such hypotheses are satisfied when the Euler—Lagrange equations are
hyperbolic, and this is the prototype for “finite speed of propagation”

7y Observation going back to Leray:

Same can be said even if X is not a symmetry (using Gronwall-type
arguments).
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ENERGY EsTIMATES

72 As the stress energy tensors depend only on d¢ and ¢, its coercivity
can at most control ¢ in W"P(ri).

73 How to provide higher order WP control?
— required for proving existence of solutions to the initial value prob-
lem.

74y "Reverse engineer” the connection between the Euler—Lagrange equa-
tion and the canonical stress tensor.
Can be made precise by linearization around the solution.

rs o=
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SIMPLEST CASE

75) Consider M = [R". Suppose Lagrangian

A B
L = L((p.d$) = hi{z(p)0xd"dps
then Euler—Lagrange equation has principal part
hoo(p)ols¢® + ... = 0.
And the canonical stress tensor appears as

qf

Teanlddl) = hypo,¢"0p9°8; — hio,4%0,4° .

7¢y Call the mapping from the coefficients

(A5, d§) — Teanldd]

the Noether transform.

rw
[ Euler, Lagrange, Noether, Einstein, and Hilbert
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NOETHER TRANSFORM

) We can apply the Noether transform to PDEs that are not necessarily
Lograngian. If ¢ solves

2 4B
hoe(p)o24% + ... = 0
then forming T, from the Noether transform gives
diVTcan = O(¢’ d¢)

which allows us to use Leray's argument.

78) Christodoulou calls those h;{; that has a Noether transform with co-
ercivity properties (relative to a vector field X and a hypersurface X)
regularly hyperbolic.

rs o=
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HIGHER ORDER VERSUS FIRST ORDER ENERGIES

79 Assume L = L(p, d¢). Euler—Lagrange is

div(ﬁL(X, dg)) = 0.

Take a derivative, we find

2

. o
dIV( 6(0/(}5)2

L(x, d¢)a(d¢)) 4+..=0
so 0¢ solves a second order PDE with

62
0(049")0(34")

hSP (x, ) = L(x, d@).

rw
[ Euler, Lagrange, Noether, Einstein, and Hilbert 39



HIGHER ORDER VERSUS FIRST ORDER ENERGIES

g0y Key observation: in general, the canonical stress energy of L is not
equal to the Noether transform of (hjg de).

&)y (Equal when L is quadratic in d¢.)

82y The canonical stress energy is “better behaved” algebraically because
it captures special cancellations from the Lagrangian structure at the
lowest derivative level.

&3y For understanding the existence theory of hyperbolic PDEs, these can-
cellations are “too nice” and "non generic”. The energy derived from
taking the Noether transform of the principal symbol should be used
instead.

rw
[ Euler, Lagrange, Noether, Einstein, and Hilbert 40



Thank you for your attention!



