
GEODESIC CONGRUENCES

WILLIE WONG

The notion of a congruence (of curves) is frequently used in mathematical rela-
tivity; in general, a congruence is nothing more than a foliation of a manifold (or
a subset thereof) by one-dimensional leaves.

Definition 1. Given a manifold M. A congruence of curves is a set C of curves
(one-dimensional submanifold of M) such that for every point p ∈M, there exists
a unique γp ∈ Γ where p ∈ γp.

Assuming that the curves are regular, the congruence defines a distinguished
subspace of the tangent bundle at each point, given by span{γ ′p}; conversely, one
way of generating a congruence of curves is to start with a non-vanishing vector
field v on M, then the set of all maximally extended integral curves of v form a
congruence, by Picard’s theorem. Below we shall always assume that our congru-
ence can be thus generated by a smooth vector field.

In mathematical relativity the notion of congruences are frequently used to rep-
resent world-lines of a family of observers, or a family of “test particles”. Under
reasonable assumptions on the underlying space-time, such world-lines should
not be closed or self-intersecting, and hence we can assume that the curves in the
congruence are all diffeomorphic to R. In order for the geometry of the congru-
ence to capture the intrinsic geometry of the space-time, and not that of external
influences, we typically ask that these world-lines correspond to “free-falling ob-
servers”. In other words, we are particularly interested in congruences of causal
geodesic curves. In this note, we develop some language and tools to discuss the
geometry of these congruences.

Index of Common Notations

M — the space-time manifold
TM — its tangent bundle
n — the space-time dimension
Flv(s,p) — the flow map for the vec-

tor field v starting at the point p with
“time” parameter s (see §1.1)

C — a congruence of curves onM
V — the subbundle of TM given by

the kernel of the projection TM→ TC
H — pullback of TC to be over M, an

(n− 1)-dimensional vector bundle

∇ — a torsion-free linear connection
Riem — the Riemann curvature of a

connection, with sign convention
Riem(X,Y )Z = ∇[X,Y ]Z − [∇X ,∇Y ]Z

Ric — the Ricci curvature of a connec-
tion

θ — the expansion of a geodesic con-
gruence

κ — the acceleration of a geodesic vec-
tor field, i.e. ∇vv = κv
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1. Differential Geometry

1.1. Assumptions. We shall assume our space-time is given by an n-dimensional
manifoldM. It is equipped with a congruence, which we will assume to be gen-
erated by a nowhere-vanishing (smooth) vector field v. We will use Flv to denote
the flow map for the vector field v; that is, given p ∈ M, consider the ordinary
differential equation

γ ′(s) = v ◦γ(s),

γ(0) = p.

Let Ip ⊆ R be the maximal interval of existence for this equation, then for s ∈ Ip,
we define Flv(s,p) = γ(s), this defines a function Flv with domain

{(s,p) ∈R×M : s ∈ Ip}

and codomain M. The smooth-dependence on initial data implies that Flv is a
smooth map. Our congruence can be given by

(2) CB {Flv(Ip,p) : p ∈M}.

We shall further assume that the curves in these congruence are all diffeomorphic
to R, so that given p,q ∈M such that the curves Flv(Ip,p) = Flv(Iq,q), there exists a
unique value s such that Flv(s,p) = q and Flv(−s,q) = p.

1.2. Fibration. We may regard C as providing an equivalence relation between
space-time events. We would like to use this to decompose our space-time.

Definition 3. By a transverse section of the congruence C, we mean a codimension 1
submanifold Σ ofM such that each γ ∈ C intersects Σ exactly once and transversely.

Given Σ and Σ′ two (smooth) transverse sections, by our assumptions there
exists a function f : Σ→R such that the mapping

Σ ∋ p 7→ Flv(f (p),p)

is a bijection between Σ and Σ′ . By the implicit function theorem we can conclude
that f is smooth, and hence Σ and Σ′ are diffeomorphic. We can therefore use
this to define a smooth structure on the set C. With this smooth structure, the
projection map

(4) M∋ p 7→ Flv(Ip,p) ∈ C

is a smooth submersion, and we can regard M as a fibred manifold over C with
one-dimensional fibers. The converse operation also holds: given an (n−1)-dimen-
sional manifold B, let π :M→ B be a submersion, with each fiber π−1(b) diffeo-
morphic to R. Then the fibers define a congruence of curves automatically, and
the resulting C is diffeomorphic to B. Therefore we shall use these viewpoints
interchangeably.

The congruence defines/is defined by a one dimensional distribution v in TM;
for convenience we record the associated subbundle as V . At each p ∈ M, the
vector vp defines an equivalent relation: two vectors ξ,ζ are considered equivalent
if they differ by a multiple of vp. This defines an (n−1)-dimensional vector bundle
H overM; in other words H is the quotient TM/V . An alternative description of
this bundle is that it is the pull back of the tangent bundle TC by the projection
map given in (4).
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2. Geometry of geodesic congruences

Our goal is to study the geometry of the aforementioned pullback bundle H.
Roughly speaking, how the geometry of this bundle evolves along a curve γ ∈ C
should reflect how nearby curves to γ compare against γ . In the general setting,
however, there is too many degrees of freedom. For arbitrary choices v, there are
no clear connections between the geometry of H (in fact, there is no clear way to
even define a geometry for H) and the space-time geometry of M as a pseudo-
Riemannian manifold. However, we expect that when C represent observers in
free-fall, that the geometry ofM can be suitably captured.

2.1. Geodesic congruences. We will start more generally: in this subsection we
will assume thatM is merely equipped with a linear, torsion-free connection ∇ on
its tangent bundle. By way of setting a sign convention, we recall the definition of
the Riemann and Ricci curvatures for linear connections.

Definition 5. Given a linear torsion-free connection ∇ on the tangent bundle TM,
its Riemann curvature is a section of T1,3M given by

Riem(X,Y )Z = ∇[X,Y ]Z −∇X∇YZ +∇Y∇XZ.
The corresponding Ricci curvature is the partial trace

Ric(X,Z) = tr(Y 7→ Riem(X,Y )Z).

We shall further assume that the vector field v is geodesic, that is ∇vv ∝ v. Con-
sider now the T1,1M tensor ∇v, which we can regard as a linear transformation
from TpM to itself at every p ∈M. Fix ξ ∈ TpM; for any λ ∈R, we can compute

(6) ∇ξ+λvpv = ∇ξv +λ∇vpv︸︷︷︸
∝v

.

Hence ∇v induces a bundle mapH→H, sending the equivalence class of ξ ∈ TpM
to the equivalence class of ∇ξv.

Additionally, if we had selected a different generating vector field ṽ for C (so
that there is a non-vanishing function φ :M→R such that ṽ = φv), we find that

(7) ∇ξ ṽ = ξ(φ)v +φ∇ξv.
The first factor being in the direction of v is discarded when we take the equiva-
lence class to reduce to an element of H.

Theorem 8. GivenM a manifold, ∇ a linear, torsion-free connection, and C a geodesic
congruence, there exists a section B of V ∗⊗H∗⊗H, such that given an equivalence class
[ξ] ∈ Hp with ξ ∈ TpM a representative, and v a section of V , the vector ∇ξv ∈ TpM
belongs to the equivalence class B(v, [ξ]) ∈ H.

Definition 9. The expansion of the geodesic congruence C is the section θ of V ∗
given by the trace (between theH∗ andH factors) of B from the previous theorem.

To compute θ, we can choose a moving frame {v = e1, e2, . . . , en} on M, with
e2, . . . , en serving as representatives ofH; denote also by {f 1, . . . , f n} the dual frame.
Then

θ(v) =
n∑

j=2

f j (∇ejv) =
n∑

j=1

f j (∇ejv)− f 1(∇vv).

In particular,
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Proposition 10. If v is affinely parametrized (so ∇vv = 0), then θ(v) = tr(∇v).

How does the expansion evolve? For this it is again most convenient to consider
the value with respect to an affinely parametrized v. Using the previous proposi-
tion, we can compute, given a frame {e1, . . . , en} and dual frame {f 1, . . . , f n}:

v(θ(v)) = ∇vtr(∇v) = tr(∇v∇v) =
∑

f i(∇v∇eiv −∇∇veiv)

=
∑

f i(∇ei∇vv −∇∇ei vv + Riem(ei ,v)v) = −tr(∇v · ∇v)−Ric(v,v).

We have therefore proven

Theorem 11 (Raychaudhuri’s equation). Given M a manifold, ∇ a linear, torsion-
free connection, and C a geodesic congruence, for v an affinely parametrized vector field
generating C, we find its corresponding expansion satisfies

v(θ(v)) = −tr(∇v · ∇v)−Ric(v,v).

2.2. Gauge fixing. While we have Hp = TpM/Vp, there is no a priori preferred
way of identifying Hp with a subspace of TpM. This, however, can be achieved
with the prescription of a one-form µ onM with µ(v) , 0, where v is a generator
of C. The requirement that µ(v) , 0 guarantees that ker(µ) is transverse to V . With
both the choice of v and µ, we can define a projection operator to ker(µ) by

(12) ζ 7→ ζ −
µ(x)
µ(v)

v.

The tensor B of Theorem 8 can then be realized as a section of V ∗⊗T∗M⊗TM given
by

(13) B(v,ζ) = ∇ζv −
µ(∇ζv)
µ(v)

v.

Noting that for any geodesic vector field v, we have B(v,v) = 0, we see that with
this realization, we can set

(14) θ(v) = trB(v,–) = tr(∇v)−
µ(∇vv)
µ(v)

.

Note that this definition is independent of the choice of µ, provided that µ(v) , 0.
In particular, if v satisfies ∇vv = κv, then µ(∇vv)/µ(v) = κ for any µ. And so an
alternative formula for the expansion, that works for any representative geodesic
vector field, is

(15) θ(v) = tr(∇v)−κ, where ∇vv = κv.

We can check tensoriality directly from (14).

θ(φv) = φtr(∇v) + v(φ)−φ
µ(∇vv)
µ(v)

− v(φ) = φθ(v).

Now taking the v derivative of (15) we obtain (similarly to the computation in the
previous section)

v(θ(v)) = tr(∇v∇v)− v(κ) =
∑

f i(∇ei (κv)−∇∇ei vv + Riem(ei ,v)v)− v(κ)

= κtr(∇v) + v(κ)− tr(∇v · ∇v)−Ric(v,v)− v(κ).
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And thus we have derived the general form of Raychaudhuri’s equation (compare
Theorem 11)

(16) v(θ(v)) = κtr(∇v)− tr(∇v · ∇v)−Ric(v,v).

2.3. Interpretation. In an infinitesimal neighborhood of a point p, for the point
p+δp, the vector field v is approximately vp +(∇v)p ·δp. This shows that the vector
field v, or “moving along the geodesics in the congruence”, moves the observers
chiefly by translation by vp. But nearby observers see a slightly different motion
given by (∇v)p. The expansion, the trace of ∇v (when v is affinely parametrized),
captures the infinitesimal dilation. If θ(v) is positive, then on average nearby
observers will move further away from the geodesic through p. Conversely, if
θ(v) is negative, then on average nearby observers will move toward the geodesic
through p.

We also remark that Raychaudhuri’s equation is of course closely tied to the
Jacobi equation for Jacobi fields, which capture also behavior of variations within
a one-parameter family of geodesics. The details we leave the reader to consider.

3. Application to Lorentzian geometry

In this section we apply and extend the theory developed above to Lorentzian
manifolds and submanifolds thereof. Some of the discussion can also be carried
forth for Riemannian manifolds, but many of the discussions below require a pos-
itive definite inner product to be available on certain subspaces, and hence cannot
easily be generalized to more general pseudo-Riemannian manifolds.

3.1. Time-like congruence. Let M be a manifold, equipped with a Lorentzian
metric g; we let ∇ be the associated Levi-Civita connection. We shall assume that
C is a geodesic congruence; furthermore we assume that the geodesics constituting
C are all time-like.

Returning to §2.2, that v is non-degenerate means that its orthogonal comple-
ment is transverse to v. Therefore we can naturally select v♭ to be the one-form
µ, and identify H with {v}⊥. As g is Lorentzian and v is time-like, H is equipped
with a positive definite inner product which we will call h (to distinguish it from g).
We are led to the formula

B(v,ζ) = ∇ζv −
g(v,∇ζv)
g(v,v)

v = ∇ζv −
1
2
∇ζ(ln |g(v,v)|)v.

Observe that ∇vg(v,v) = 2g(v,∇v) = 2κg(v,v). As discussed previously, ζ 7→ B(v,ζ)
can be interpreted as a mapping from {v}⊥ to itself; relative to the inner product
h, we can decompose B(v,–) algebraically:

(17) B(v,–) =
1

n− 1
θ(v)Id + σ (v) +ω(v).

The first term, the expansion, is the pure-trace part. The trace-free part of B(v,—)
is split into the self-adjoint part σ and the anti-self-adjoint part ω.

Definition 18. We refer to the trace-free self-adjoint part σ (v) as the shear of the
congruence C; and the anti-self-adjoint part ω(v) as the twist. Note that these are
only defined in the presence of an inner product on H.
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The metric h can be written as

(19) h = g − 1
g(v,v)

v♭ ⊗ v♭

Denote by ω̌(v) the bilinear form ω̌(v)(ξ,ζ) = h(ω(v)(ξ),ζ), and similarly σ̌ (v) the
bilinear form for σ (v), a direct computation finds

ω̌(v) =
1
2
d(v♭)− 1

4
d(ln |g(v,v)|)∧ v♭.

By construction ιvω̌(v) = 0, and hence by Frobenius’ theorem

Proposition 20. The twist ω(v) vanishes if and only if the distribution H = {v}⊥ is
locally integrable; in other words, ω(v) vanishes if and only if v is locally hypersurface
orthogonal.

We can compute also the evolution equation for ω̌(v). The computation is easi-
est in index notation:

∇v(∇avb −∇bva) = vc(∇a∇cvb +Racdbv
d −∇b∇cva −Rbcdav

d)

= ∇a(κvb)−∇avc∇cvb −∇b(κva) +∇bvc∇cva
= κ(dv♭)ab + (dκ∧ v♭)ab +∇bvc∇cva −∇avc∇cvb;

and

∇v(d(ln |g(v,v)|)∧ v♭)ab = (d(ln |g(v,v)|)∧κv♭)ab + (d∇v(ln |g(v,v)|)∧ v♭)ab
−∇avc∇c(ln |g(v,v)|)vb −∇bvc∇c(ln |g(v,v)|)va

= κ(d(ln |g(v,v)|)∧ v♭)ab + 2(dκ∧ v♭)ab
−∇avc∇c(ln |g(v,v)|)vb −∇bvc∇c(ln |g(v,v)|)va.

Putting these together and using the decomposition (17)

(21) ∇vω̌(v) = κω̌(v)− 2
n− 1

θω̌(v)− σ · ω̌(v)−ω · σ̌ (v).

A consequence of this is that if the twist ω(v) vanishes at some point p, then it
vanishes along the geodesic through p.

Proposition 22. Suppose (M, g) is a Lorentzian manifold equipped with a time-like
geodesic congruence C. Assume further that

• there exists a section of C that is orthogonal to V everywhere;
• Ric(v,v) ≥ 0 for every v generating C.

Then letting v be an affinely parametrized geodesic vector field generating V , we have
that θ(v) is monotonically decreasing in the direction of v.

Proof. By Theorem 11, we have

v(θ(v)) = −tr(∇v · ∇v)−Ric(v,v).

Our assumption on hypersurface orthogonality initially, coupled with (21), im-
plies that the twist vanishes everywhere, and hence ∇v is everywhere self-adjoint.
Hence ∇v · ∇v is positive semi-definite. This shows v(θ(v)) ≤ 0. □
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3.2. Null congruences. For our next application, we will look at null hypersurfaces
in Lorentzian manifolds. More precisely, let M̄ be an (n+1)-dimensional manifold,
equipped with a Lorentzian metric g. We shall let M be a null hypersurface. A
convenient definition is this:

Definition 23. M ⊆ M̄ is a null hypersurface if at every point p ∈ M, there exists
an open neighborhood N ∋ p in M̄, and a defining function u : N →R such that

• du , 0 on N ,
• M∩N = u−1({0}),
• g−1(du,du) = 0 onM∩N .

Note that by definition, the pull-back of the full space-time metric g ontoM is
no longer a pseudo-Riemannian metric: it is degenerate. (This is a second, equiva-
lent definition of a null hypersurface: a codimension 1 submanifold for which the
pull-back of the space-time metric is degenerate.) An important consequence is
that

Proposition 24. Null hypersurfaces are ruled by null geodesics.

Proof. It suffices to work locally. Let u be a local defining function of the null
hypersurfaceM. Consider the vector field v = (du)♯. Our hypothesis implies that
g(v,v) = 0 and v , 0. By definition alongMwe have v(u) = du(v) = g−1(du,du) = 0,
so v is tangent to the level sets of u, and hence tangent toM.

We next show that v is geodesic alongM. To do so, we note that ∇vv = ∇v(du)♯,
and, using that the metric Hessian of a scalar function is symmetric,

(∇vdu)a = ∇bu∇b∇au = ∇bu∇a∇bu =
1
2
∇a(∇bu∇bu).

Since g−1(du,du) = 0 along M, and v is tangent to M, we see that g(∇vv,v) =
1
2v(g−1(du,du)) = 0. In particular, this means that (∇vv)(u) = 0 along M, and
hence ∇vv is tangent toM. Furthermore, we see that given any tangent vector w to
M, that g(∇vv,w) = 0 also. This forces ∇vv ∝ v alongM, or that v is geodesic. □

Proposition 25. Let v be a null geodesic vector field alongM. Then for any X tangent
toM, we have ∇Xv is also tangent toM. As a consequence, ∇vX is also tangent toM.

Proof. The first claim follows from the fact that g(∇Xv,v) = 1
2∇Xg(v,v) = 0 since

g(v,v) = 0.
For the second claim, observe that if X and v are both tangent toM, their com-

mutator [X,v] is also tangent toM. As the Levi-Civita connection is torsion free,
we can write ∇vX = ∇Xv + [v,X] and hence ∇vX is also tangent toM. □

Now, because g pulls back to a degenerate bilinear form onM, there is no nat-
ural “induced Levi-Civita connection” onM. Instead, for each field of transverse
vectors k alongM, there is an associated induced connection D.

Definition 26. Let k be a vector field defined onM that is transverse toM, and v
a null geodesic vector field onM, together they induce a linear connection D on
M given by

DXY = ∇XY −
g(∇XY ,v)
g(k,v)

k.
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It is clear that the definition is independent of the choice of v (since M only
has one tangent null direction). Because of Proposition 25, we see that for any null
vector field v and any X tangent to M, the values of DXv and DvX are well-defined
independently of the choice of k. With an arbitrary choice of k, we see that M is
an n-dimensional manifold with an induced linear connection D for which v is
geodesic, and therefore our previous discussion for geodesic congruences can be
applied.

Additionally, as DXv is independent of the choice of k and is equal to ∇Xv, we
have that the tensor field B (a section of V ∗ ⊗H∗ ⊗H) is well-defined independent
of the choice of k. We may therefore extend Theorem 8 to read:

Theorem 27. Let M̄ be a Lorentzian manifold andM a null hypersurface. Let V be the
one-dimensional distribution of null vectors in TM, and set H = TM/V . Then there
exists a section B of V ∗ ⊗H∗ ⊗H such that given an equivalence class [ξ] ∈ H with
representative ξ ∈ TM, and v a section of V , the vector ∇ξv belongs to the equivalent
class B(v, [ξ]).

In this context, we refer to the tensor field B as the null second fundamental form
of the hypersurfaceM. The corresponding section θ of V ∗ is called the null expansion
ofM.

In contrast to the case with time-like congruences of Lorentzian manifolds, the
fact that the pull back of g toM is degenerate, with kernel V , means that g induces
a positive definite inner product onH. More precisely, observe that given ξ,ξ ′ ∈ TpM
and v the null geodesic field, we have that for any λ,λ′ ∈ R the scalar product
g(ξ + λv,ξ ′ + λ′v) is independent of λ,λ′ . This implies that g factors through the
equivalence classes H. Relative to this inner product, we can also factor

(28) B(v,–) =
1

n− 1
θ(v)IdH + σ (v) +ω(v)

where σ (v) (null shear) is the trace-free self-adjoint part of B, and ω(v) (null twist)
is the anti-self-adjoint part.

To better analyze this decomposition, it is easier to get a more convenient rep-
resentation of B(v,x). Given [x], [y] inH, we want to think about the bilinear form
given by the mapping

(29) B̌ : ([x], [y]) 7→ ⟨B(v, [x]), [y]⟩

where the inner product is the one induced by g. But as discussed above, this
product can be set to equal to g(Z,Y ) for any Y in the equivalence class of [y] and
Z in the equivalence class of B(v, [x]), and by Theorem 27 if we take any represen-
tatives (X,Y ) of ([x], [y]) the value is exactly equal to g(∇Xv,Y ). We are therefore
led to study the bilinear form (TM)2 ∋ (X,Y ) 7→ g(∇Xv,Y ). Then σ (v) corresponds
to the trace-free symmetric part of this bilinear form, and ω(v) corresponds to the
anti-symmetric part.

We wish to consider the evolution of this bilinear form. For this we need to take
derivatives in the v direction. By Proposition 25, we find that for any X tangent to
M,

Dv(X +λv) = DvX + v(λ)v +λDvv.

And hence two vector fields in the same equivalence class of H have v derivatives
in the same equivalence class. This implies that Dv is well-defined on sections of
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the bundle H. Furthermore, considering the bilinear form B̌ defined in (29), its
covariant derivative can be computed to be

(DvB̌)([x], [y]) = v(B̌([x], [y]))− B̌(Dv[x], [y])− B̌([x],Dv[y])

= v(g(∇xv,y))− B̌([Dvx], [y])− B̌([x], [Dvy])

= v(g(∇xv,y))− g(∇∇vxv,y)− g(∇xv,∇vy).

We can rewrite this as

(DvB̌)([x], [y]) = g(Riem(x,v)v,y) + g(∇x∇vv,y)− g(∇∇xvv,y)

= g(Riem(x,v)v,y) +κg(∇xv,y)− g(∇∇xvv,y).

The symmetry properties of the Riemann curvature tensor means that if x,x′ and
y,y′ are two representatives of [x] and [y] respectively, then

g(Riem(x,v)v,y) = g(Riem(x′ ,v)v,y′);

furthermore we know that g(Riem(x,v)v,y) = g(Riem(y,v)v,x), and hence there
exists a symmetric bilinear form R on H satisfying

(30) R([x], [y]) = g(Riem(x,v)v,y).

And finally we may write

(31) DvB̌ = R+κB̌− B̌(B(v,–),–).

If we decompose

B̌ =
1

n− 1
θ(v)g + σ̌ + ω̌

then we find that we can expand

B̌(B(v,–),–) =
1

(n− 1)2θ(v)2g +
2

n− 1
θ(v)σ̌ +

2
n− 1

θ(v)ω̌

+ g(σ (–),σ (–))− g(ω(–),ω(–)) + g(ω(–),σ (–))− g(σ (–),ω(–)).

Before continuing further, however, observe that in this setting the null twist ω has
a meaning similar to how the twist in the time-like setting measures hypersurface
orthogonality. As discussed before, B̌(X,Y ) = g(∇Xv,y) given a representative v of
V . So

ω̌ = d(v♭)|M.

Letting u be again the defining function ofM, then we find we can always write
v♭ = f du for some scalar function f . So we have

ω̌ = df ∧ du|M = 0

always. So we can conclude that in our setting where we consider a null geodesic
congruence attached to a null hypersurface, the null twist automatically vanishes.
(In more general settings where a family of not-necessarily integrable null geo-
desic congruence is studied, the twist will play a role.) Armed with this knowledge
we find

(32) B̌ =
1

n− 1
θ(v)g + σ̌

and (31) becomes

(33) DvB̌ = R+κB̌− 1
(n− 1)2θ(v)2g − 2

n− 1
θ(v)σ̌ − g(σ (–),σ (–)).
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We can split this into the evolution for θ(v) and the evolution for σ̌ . To do so, we
need to compute the derivative Dvg, where g is interpreted as the induced bilinear
form on TM from the Lorentzian metric on M̄. By definition, we have

(Dvg)(X,Y ) = v(g(X,Y ))− g(DvX,Y )− g(X,DvY ).

But as we have discussed before, the vector DvX is equal to ∇vX, the latter com-
puted using the ambient Levi-Civita connection, thanks to Proposition 25. There-
fore the metric compatibility of the Levi-Civita connection actually produces the
statement that

(34) Dvg = 0.

Next, the general Raychaudhuri’s equation (16) can be re-written in the following
form (using that ω = 0)

(35) v
(
θ(v)

)
= κθ(v)− 1

n− 1
θ(v)2 − tr(σ ◦ σ )−Ric(v,v).

Plugging this into (33), we find the following equation:

(36) Dv σ̌ = κσ̌ − 2
n− 1

θ(v)σ̌ +R+
1

n− 1
Ric(v,v)g

− g(σ ◦ σ (–),–) +
1

n− 1
tr(σ ◦ σ )g.

Remark 37. When n = 3, this last equation simplifies. Observe that if V is a two-
dimensional inner product space, and σ a self-adjoint, trace-free operator, and ω
and anti-self-adjoint operator, we have that relative to a standard basis

σ =
(
a b
b −a

)
, ω =

(
0 c
−c 0

)
and hence

σ2 =
(
a2 + b2

a2 + b2

)
, ω =

(
−c2

−c2

)
are automatically pure trace! So in the physical space-time (where n + 1 = 4), we
have that the last two factors cancel each other, as the trace-free part of σ ◦ σ
vanishes. In higher dimensions however these two terms may be present non-
trivially.
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