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The goal of this short note is to record elementary proofs of interpolation in-
equalities of the form

(1) ∥f ∥q ≲ ∥f ∥θp · |f |1−θ0,β

where f is a real valued smooth function defined on some bounded interval, the
norms ∥–∥p are the Lp norms, and the seminorm |–|0,β is the Hölder C0,β seminorm.
We shall take 1 ≤ p < q ≤ ∞ and β ∈ (0,1]. The parameter θ takes values in (0,1).
Similarly inequalities are presumably available on domains in R

n, but for simplic-
ity of argument and simplicity of ideas we will only consider the one dimensional
case here.

The inequality (1) should be compared with the Gagliardo-Nirenberg-Sobolev-
Morrey inequalities, which provide estimates of the form

(2) |f |0,β ≲ ∥f ∥θp ∥f (k)∥1−θq

here f (k) is the kth derivative of f , with k ≥ 1, and p,q ∈ [1,∞]. They guiding
principle behind all such inequalities is the idea of a Sobolev scale. Given α,β ∈
[0,∞) and p,q ∈ [1,∞], we write

(3) (α,p) � (β,q) ⇐⇒ α − 1
p
≤ β − 1

q
.

One can check that this defines a total preorder on [0,∞) × [1,∞]; this ordering
is the Sobolev scale. We can associate to the Sobolev seminorm f 7→ ∥f (k)∥q the
scale (k,q), and to the Hölder seminorm f 7→ |f (k)|0,β the scale (k +β,∞). The basic
heuristic behind interpolation inequalities on the Sobolev scale is the idea that
given

(α,p) ⪵ (β,q) ⪵ (γ,r)

(and some other technical assumptions) a seminorm at the scale (β,q) can be in-
terpolated between the seminorms of the scales (α,p) and (γ,r).

1. Hölder seminorms

Given f : I →R, its Hölder seminorm is usually defined as

|f |0,β B sup
x,y∈I

|f (x)− f (y)|
|x − y|β

.

The function f is said to be of class C0,β if |f |0,β <∞.
The following is a convenient equivalent definition:
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Definition 4. A continuous function is of class C0,β if there exists M > 0 such that
for any interval J ⊆ I and every x ∈ J , we have∣∣∣f (x)− 1

|J |

∫
J
f
∣∣∣ ≤M |J |β .

Proof. Given f is continuous, it attains its average value on J , call this point x0.
Then |f (x) − f (x0)| ≤ |f |0,β |x − x0|β . This shows that “original definition” implies
“new definition”.

Suppose now f satisfies “new definition”, then given x < y, let J = [x,y] and
estimate |f (x) − f (y)| ≤ |f (x) − 1

|J |
∫
J
f | + |f (y) − 1

|J |
∫
J
f | and the “original definition”

follows. □

Now, supposing f is class C0,β , then it is continuous, and hence for any interval
J we have f (J) is an interval. This means that

sup
x
∈ J

∣∣∣f (x)− 1
|J |

∫
J
f
∣∣∣ ≥ 1

2
|f (J)|.

and hence up to universal constant, we have that for every interval J that

(5) |f (J)| ≲ |J |β |f |0,β .

2. Interpolation

Now let h : I → R be a C0,β function. Suppose that h(x0) = 0 for some x0 ∈ I .
Let xn be a sequence maximizing |h|, by Bolzano-Weierstrass we can assume xn
converge. Consider the set {x : 1

2 sup |h| ≤ h(x)}. Since xn converges, it is eventually
in one of its connected components, which we call J . Observe that supx∈J |h(x)| =
∥h∥∞. As I is connected, by the intermediate value theorem (against the point x0),
we must have infx∈J |h(x)| = 1

2∥h∥∞. This shows that |h(J)| = 1
2∥h∥∞.

We can now apply (5) to conclude

(6)
1
2
∥h∥∞ ≤ |h(J)| ≲ |J |β |h|0,β .

This we rewrite as

(
1
2
∥h∥∞)p+1/β ≲ |h|1/β0,β (

1
2
∥h∥∞)p |J |.

Note that as |h| is at least 1
2∥h∥∞ on J , the product on the right is a lower bound for

the
∫
J
|h|p ≤

∫
I
|h|p. And so we conclude

(7) (
1
2
∥h∥∞)p+1/β ≲ |h|1/β0,β ∥h∥

p
p.

This shows:

Theorem 8. There exists a universal constant C such that, whenever I is a bounded
interval, and h : I →R of class C0,β with 0 ∈ h(I), we have

∥h∥∞ ≤ C|h|
1

pβ+1
0,β ∥h∥

pβ
pβ+1
p .

Note that the constant is independent of I .
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The ∥h∥q version follows immediately after applying the interpolation inequal-
ity ∫

I
|h|q ≤ ∥h∥q−p∞

∫
I
|h|p.

3. Dropping the regularity

A next question is, can we get a similar expression interpolating with lower
derivatives? That is, given f ∈ C∞0 (R), can we estimate

∥f ′∥∞ ≲ ∥f ∥θp |f ′ |1−θ0,β ?

It turns out the answer is yes. Going back to (6), which we apply to h = f ′ , we find

∥f ′∥1+1/β
∞ ≲ ∥f ′∥∞|J ||f ′ |

1/β
0,β .

The key point is that |f ′ | is bounded below by 1
2∥f

′∥∞ on |J |, and hence f ′ is signed.
This means we can estimate

∥f ′∥∞|J | ≤ 2|
∫
J
f ′ | ≤ 4∥f ∥∞.

And so we have the estimate

(9) ∥f ′∥1+1/β
∞ ≲ ∥f ∥∞|f ′ |

1/β
0,β .

This can now be further upgraded, using the β = 1 version of what we proved
before

∥f ′∥1+1/β
∞ ≲ |f |

1
p+1
0,1 ∥f ∥

p
p+1
p |f ′ |

1/β
0,β ≲ ∥f

′∥1/(p+1)
∞ ∥f ∥p/(p+1)

p |f ′ |1/β0,β

Cancelling we find

(10) ∥f ′∥∞ ≲ ∥f ∥
βp

βp+p+1
p |f ′ |

p+1
βp+p+1
0,β .

Applying to the higher derivatives we find also

(11) ∥f (k)∥∞ ≲ ∥f (k−1)∥
βp

βp+p+1
p |f (k)|

p+1
βp+p+1
0,β .

We next combine this with the Gagliardo-Nirenberg-Sobolev interpolation, one
version of which states

(12) ∥f (k−1)∥p ≲ ∥f (k)∥
p(k−1)
pk+1
∞ ∥f ∥

p+1
pk+1
p .

This yields after some computation

(13) ∥f (k)∥βp+pk+1
∞ ≲ ∥f ∥βpp |f (k)|pk+1

0,β .

Inserting this into the Gagliardo-Nirenberg-Sobolev inequality

(14) ∥f ∥∞ ≲ ∥f ∥
kp

kp+1
p ∥f (k)∥

1
kp+1
∞

we conclude, at the end of the day, the following estimate:

(15) ∥f ∥∞ ≲ ∥f ∥
(k+β)p

(k+β)p+1
p |f (k)|

1
(k+β)p+1
0,β .
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