
EPIGRAPHICAL LIMITS AND FRIENDS

WILLIE WY WONG

Abstract. A short note rewriting some of the ideas concerning the so-called epi-
graphical limits, which turns out to be useful in convex and variational analysis.

1. Introduction

For more details on the material discussed in here, the reader should consult

R.T. Rockafellar and R.J-B. Wets, Variational Analysis, Springer-
Verlag (1998), https://doi.org/10.1007/978-3-642-02431-3.

We can start with some motivational examples related to variational analysis. One
of the purposes of variational analysis is to understand those inputs that corre-
spond to global minima of (R-valued) functions. An example of the questions
considered are of the following form:

Example 1.1. Let K ⊆ R
d and fν → R a net of continuous S → R functions. By the

extremal value theorem, each fν attains its minimum on K , and we may choose one
such representative xν for each fν . As K is compact, xν has accumulation points.
Given that fν converges to some function f∞ (in some yet unspecified sense), are the
accumulation points of xν related to the minima of f∞?

That the answer depends on the mode of convergence of fν can be seen through
examples. In the positive direction, we may suppose that fν converges to f∞ uni-
formly. In this case, if ξ is an accumulation point of xν , then ξ is a minimum of
f∞.

Proof. By taking a subnet, we can assume that xν → ξ. Write fν(xν) − f∞(ξ) =
fν(xν) − f∞(xν) + f∞(xν) − f∞(ξ). The first difference converges to zero by uniform
convergence, and the second difference converges to zero due to the continuity of
f∞ (as the uniform limit of continuous functions). And hence fν(xν)→ f∞(ξ). It
suffices to show f∞(ξ) = minf∞.

Suppose not, then there exists ζ ∈ K such that f∞(ξ)−f∞(ζ) =: m > 0. By uniform
convergence we have that fν(ζ) is eventually less than f∞(ξ) −m/2. But fν(xν) is
eventually larger than f∞(ξ)−m/2, showing that eventually xν is not a minimum
of fν , a contradiction to its definition. □

We remark that only the first half of the proof really requires uniform conver-
gence and continuity. Indeed, we have the following proposition:

Proposition 1.2. Let fν : S → R a net of functions defined on a set S, and suppose
fν → f∞ pointwise. Then inff∞ ≥ limsup(inffν).
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Proof. For each s ∈ S, for each ϵ > 0, we have that fν(s) is eventually less than
f∞(s)+ϵ. As inffν ≤ fν(s), we have that inffν is eventually less than f∞(s)+ϵ. Thus
limsup(inffν) ≤ f∞(s)+ϵ for every ϵ > 0, and hence limsup(inffν) ≤ f∞(s) for every
s ∈ S. But this means inff∞ ≥ limsup(inffν). □

On the other hand, pointwise convergence is not sufficient to guarantee a posi-
tive answer to our original problem. Consider the case K = [−1,2] ⊆ R. For n ∈N,
let fn : K →R be the piecewise linear continuous function satisfying

fn(−1) = 0 fn(−1
2 ) = 1 = f (0) fn( 1

n ) = −1 fn( 2
n ) = 1 = fn(2).

The pointwise limit of this sequence is the piecewise linear continuous function
satisfying

f∞(−1) = 0 f∞(−1/2) = 1 = f∞(2).

The functions fn realize their minima at xn = 1
n with fn( 1

n ) = −1. But limxn = 0 is
not a minimum of f∞, and limfn(xn) = −1 < inff∞ = 0.

The notion of epigraph convergence is a notion of convergence for nets of func-
tions defined on subsets of Rd . By design it is weaker than (and implied by) uni-
form convergence. The purpose of these notes is to describe this notion, which is
constructed to be compatible with the process of taking minima.

2. Convergence of nets of sets in a topological space

We begin by introducing a notion of convergence of nets of sets.

Definition 2.1. Let (X,τ) be a topological space, and A a directed set. Consider a
net (Sα)α∈A of subsets of X. Given x ∈ X,

• we say that x attracts Sα if for every open set O ∋ x, it is true that Sα ∩O is
eventually non-empty;

• we say that x repels Sα if there exists an open set O ∋ x such that Sα ∩O is
eventually empty.

We further define

τ-limSα
def= {x ∈ X | x attracts Sα};(2.2)

τ-limSα
def= {x ∈ X | x does not repel Sα}.(2.3)

Recall that using the inclusion ordering, we can define the limits superior and
inferior of a net of sets as follows:

limsupSα =
⋂
α

⋃
β≥α

Sβ

liminfSα =
⋃
α

⋂
β≥α

Sβ

We see that x repels Sα if and only if there is an open O ∋ x and α0 such that
O ⊆ ∁Sα for every α ≥ α0. This is equivalent to x ∈ int(∩α≥α0

∁Sα) for some α0. So
applying De Morgan’s Laws we find the similar statement

(2.4) τ-limSα =
⋂
α

cl
(⋃
β≥α

Sβ
)
.
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(The author is not able to come up with a similar expression for τ-limSα .) As
the notion of “not attracting” and “repelling” are both based on the existence of
certain open sets, this immediately implies

(2.5) Both τ-limSα and τ-limSα are closed sets.

As “eventually” implies “frequently”, we also see

(2.6) τ-limSα ⊆ τ-limSα .

The notion of attractors and repellers can be best illustrated when Sα = {xα},
where xα is a net of points in X. In this case, τ-limSα is nothing more than the set
of all accumulation points of xα , and x ∈ τ-limSα if and only if xα converges to x.

We note that it is possible for x to neither attract nor repel Sα . Hence in general
τ-limSα and τ-limSα may differ. To give an example, consider the set X = {0,1}
with the discrete topology, and the sequence Sn = {n mod 2}. Then both points
in the set neither attract nor repel Sn; in this case we have τ-limSn = ∅, while
τ-limSn = {0,1}.
Definition 2.7. Let (X,τ) be a topological space, a net Sα of subsets of X is said to
τ-converge if τ-limSα = τ-limSα . In this case we denote by τ-limSα the common
limit.

Proposition 2.8 (Monotone convergence). If Sα is monotone by inclusion, then it
τ-converges.

Proof. (Increasing case). When Sα is increasing, then ∪β≥αSβ is independent of α.

So τ-limSα = cl(∪Sα). As Sα is increasing, if an open set O intersects some Sα , it
must intersect all Sβ with β ≥ α. So “not repelling” (every open O ∋ x frequently
intersects Sα) implies “attracting” (eventually intersects).

(Decreasing case). As Sα is decreasing, we find ∪β≥αSβ = Sα , so τ-limSα =
∩αcl(Sα). It suffices to show that “not attracting” implies “repelling” in this case.
The former asserts there exists an open set that frequently is disjoint from Sα . As
Sα is decreasing, if O∩Sα = ∅ then O∩Sβ = ∅ for every β ≥ α. So frequently implies
eventually. □

Proposition 2.9 (Localization). Let (X,τ) be a topological space, and Y ⊆ X open.
Given a net of subsets Sα of X, we have

Y ∩ τ-limSα ⊆ τ-lim(Sα ∩Y ) ⊆ cl(Y )∩ τ-limSα ,

Y ∩ τ-limSα ⊆ τ-lim(Sα ∩Y ) ⊆ cl(Y )∩ τ-limSα .

In particular, intersection all three with Y we obtain equality.

Proof. We focus on the attractors case; the non-repellers case is similar and omit-
ted. For the first containment, let’s fix x ∈ Y ∩ τ-limSα .

• Since x ∈ Y , given an open O ∋ x, we have O∩Y is an open that contains x.
• Since x ∈ τ-limSα , we have that (O ∩ Y ) ∩ Sα is eventually non-empty.

This also means that O ∩ (Y ∩ Sα) is eventually non-empty, showing x ∈
τ-lim(Sα ∩Y ).

For the second containment, if x ∈ τ-lim(Sα ∩Y ), then for every open set O ∋ x we
have that O∩Sα∩Y is eventually non-empty. This means that O∩Sα is eventually
non-empty (implying x ∈ τ-limSα) and that O ∩ Y is non-empty (implying x ∈
cl(Y )). □
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3. Epigraphical Convergence

Let (X,τ) be a topological space. Throughout R = [−∞,∞] will denote the ex-
tended real line, equipped with the standard order topology. We will endow X×R
with the product topology.

Definition 3.1 (Closed epigraphs). Given f : X→ R a function, its closed epigraph
is the subset of X ×R given by

epi(f ) def= cl
(
{(x,z) ∈ X ×R | z ≥ f (x)}

)
.

Similarly, a subset F ⊆ X × R is said to be a closed epigraph if there exists some
f : X→R such that F = epi(f ).

Proposition 3.2 (Basic properties of the closed epigraph). Given f : X→R,

• X × {+∞} ⊆ epi(f );
• (x,z) ∈ epi(f ) if and only if for every open set O ∋ x and every y > z, there

exists x′ ∈O such that f (x′) < y.

Proof. The first claim follows because epi(f ) contains all (x,z) where z ≥ f (x), and
+∞ is the maximum of R.

For the second claim, first note that a basis of the product topology on X ×R is
given by cylinders of the form O × I , where O is an open of X and I is an interval
of R that is open in the order topology. From this it follows that (x,z) ∈ epi(f ) if
and only if for every O ∋ x and I ∋ z we have that O × I contains some (x′ , z′) with
f (x′) ≤ z′ . That this implies the second claim is obvious, as for every y > z, the set
[−∞, y) is an open interval containing z.

For the reverse implication, there are three possibilities: (a) +∞ ∈ I (b) I =
[−∞, y) and (c) I = (w,y). The first case is trivial, as we know then (x,+∞) ∈ O × I
and f (x) ≤ +∞ is always true. The second case is exactly the hypothesis. It suffices
to consider only the final case. Let y > z be given and let x′ ∈ O be such that
f (x′) < y. The we know that for every z′ ∈ [f (x′), y) we have f (x′) ≤ z′ . It suffices to
note that (w,y)∩ [f (x′), y) is non-empty. □

Proposition 3.3. A closed set F ⊆ X ×R is a closed epigraph if and only if both of the
following are true:

(1) for every x ∈ X, there exists some z ∈R such that (x,z) ∈ F;
(2) if (x,z) ∈ F then (x,y) ∈ F for every y ≥ z.

Proof. (Forward implication) Assuming F is a closed epigraph, then the first claim
follows from the first claim of Prop. 3.2. For the second claim, assume F = epi(f )
for some f . We may assume y > z since when y = z the implication is automatic.
By Prop. 3.2 we also know (x,+∞) ∈ F. So it remains to consider z < y < +∞; in this
case y must be real.

By the second claim of Prop. 3.2 it suffices to show that, with z < y < +∞, if for
every open set O ∋ x and z′ > z there is x′ ∈ O such that f (x′) < z′ , then the same
holds for z replaced by y. But this follows because if z′ > y then z′ > z as y > z.

(Reverse implication) Assuming both conditions, then the fiber Fx
def= {z ∈R | (x,z) ∈

F} is non-empty and upward closed. As F is closed, this means that Fx is a closed
interval [infFx,+∞]. Hence we may define f (x) = infFx. By definition epi(f ) =
cl(F) = F as F is closed. □
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Definition 3.4 (Lower semi-continuous representative). Following the proof above,
given a closed epigraph F, we define fnF : X→R as the function

fnF(x) = inf{z ∈R | (x,z) ∈ F}.

It is easy to now check that

Lemma 3.5. Given a function f : X→R, and set F = epi(f ).
(1) The function fnF(x) ≤ f (x) for all x.
(2) The function fnF is lower semi-continuous.
(3) f is lower semi-continuous if and only if f = fnF .
(4) epi(fnF) = F.

Proposition 3.6. Let Fα be a net of epigraphs in X × R. Then both τ-limFα and
τ-limFα are epigraphs.

Proof. We will use Prop. 3.3. We’ve already established that both τ-limFα and
τ-limFα are closed. And as X×{+∞} ⊆ Fα for all α by Prop. 3.2, we have X×{+∞} ⊆
τ-limFα (viz. τ-limFα). It suffices to show that each fiber is upward closed.

Under the product topology, given (x,z) ∈ τ-limFα (viz. τ-limFα) if and only if
for every open O ∋ x and every ϵ > 0, the set O×(z−ϵ,z+ϵ) intersects Fα frequently
(viz. eventually). Now given y ≥ z, the super-set O × (z − ϵ,y + ϵ) also intersects Fα
frequently (viz. eventually). But as Fα is fiberwise upwards closed, if Fα intersects
O × (z − ϵ,y + ϵ), it must also intersect O × (y − ϵ,y + ϵ). Together this proves the
claim. □

Proposition 3.7. If a net of functions fα : X→R converges pointwise to f , then

τ-limepi(fα) ⊇ epi(f ).

Proof. By Prop. 3.2, (x,z) ∈ epi(f ) if and only if for every open set O ∋ x and every
y > z there is some x′ ∈O and y′ ∈R such that f (x′) < y′ < y. We may assume with-
out loss of generality that z < y < +∞. Pointwise convergence implies eventually
fα(x′) < y′ . And hence (x′ , y′) ∈ epi(fα) eventually. Hence for any open interval I
containing [z,y′), we have (x,z) ∈O× I and O× I intersects epi(fα) eventually. This
proves epi(f ) ⊆ τ-limepi(fα). □

Proposition 3.8. If a net of functions fα : X→R converges uniformly to f , then

τ-limepi(fα) ⊆ epi(f ).

Proof. It suffices to show that if (x,z) ∈ ∁epi(f ), then (x,z) repels epi(fα). Our
given (x,z) is such that there exists some open O ∋ x and ϵ > 0 such that for every
(x′ , z′) ∈ O × (z − ϵ,z + ϵ) we have f (x′) > z′ . This implies f |O ≥ z + ϵ. By uniform
convergence we see that the set

{(x′ , z′) | z′ ≥ f (x′)} ∩O × (z − ϵ/2, z+ ϵ/2)

is eventually empty. Taking the closure of the first factor, and using that the second
factor is open, we find that epi(fα)∩O × (z − ϵ/2, z + ϵ/2) is eventually empty, and
hence (x,z) repels epi(fα). □

Corollary 3.9. If a net of functions fα : X→R converges uniformly to f , then

τ-limepi(fα) = epi(f ).
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Proof. Since uniform convergence implies pointwise convergence, the two previ-
ous propositions, combined with (2.6), yields

epi(f ) ⊆ τ-limepi(fα) ⊆ τ-limepi(fα) ⊆ epi(f ).

The result follows. □

Definition 3.10. A net of functions fα : X→R is said to converge epigraphically to
f : X → R if their corresponding closed epigraphs Fα = epi(fα) and F = epi(f ) are
such that τ-limFα = F.

Our Cor. 3.9 shows that uniform convergence of functions implies epigraphical
convergence. The reverse implication is not true, and in general epigraphical con-
vergence and pointwise convergence are not logically comparable. We illustrate
both of these in the next example.

Example 3.11. Returning to our earlier example, where K = [−1,2], and our se-
quence of functions are given by linearly interpolating

fn(−1) = 0 fn(−1
2 ) = 1 = f (0) fn( 1

n ) = −1 fn( 2
n ) = 1 = fn(2).

As discussed, the pointwise limit of these functions is f∞ given by linearly inter-
polating

f∞(−1) = 0 f∞(−1
2 ) = 1 = f∞(2).

Furthermore this sequence of functions does not converge uniformly, as ∥f∞ −
fn∥∞ = 2.

We will show that the epigraphical limit of fn exists, but is not equal to f∞. First
note that on the open subset Kϵ = [−1,0)∪ (ϵ,2], for ϵ ∈ (0,1), we have that fn→ f∞
uniformly (in fact they are eventually equal). So restricted to Kϵ the epigraphical
limit of fn exists and is equal to f∞. By Prop. 2.9 this means that

(τ-limepi(fn))∩Kϵ ×R = (τ-limepi(fn))∩Kϵ ×R = epi(f∞)∩Kϵ ×R

for every ϵ > 0. It suffices to consider what τ-limepi(fn) and τ-limepi(fn) are at
x = 0.

Consider (0, z) first with z < −1. Then the open set K × [−∞,−1) is disjoint from
epi(fn) for any n, and contains (0, z). Hence (0, z) repels epi(fn). On the other hand,
if z = −1, we see that for any open box (−ϵ,ϵ)× (1−δ,1+δ), for all sufficiently large
n we have ( 1

n ,−1) belongs to the box, and also to epi(fn); this shows that (0,−1)
belongs to both τ-limepi(fn) and τ-limepi(fn).

Observe now that epi(f∞) does not contain (0,−1). This shows that the epi-
graphical limit of fn is not f∞; instead, it is the function

f (x) =

f∞(x) x , 0
−1 x = 0

Returning to our motivating question about the values of the infima, we have
the following observations. First, notice that for a function f : X → R, we have
that

inff (X) = inf fnepi(f )(X).

Now, given a net of epigraphs Fα , and set F = τ-limFα and F = τ-limFα . Let
zα = inf fnFα (X).
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Consider first z < liminfzα . Then eventually zα > z, and eventually X×[−∞, z)∩
Fα = ∅. This shows that X × [−∞, z) ⊆∁(F). This shows then

liminfzα ≤ inf fnF(X).

On the other hand, consider z > inf fnF(X), so there exists (x,z′) ∈ F with z′ < z;
this shows that X × [−∞, z) must intersect Fα eventually, and hence zα must be
eventually less than z. Therefore

limsupzα ≤ inf fnF(X).

Let fα be a net of functions from X → R. Denote by f = fnτ-limepi(fα) and f =
fnτ-limepi(fα). The two inequalities derived above can be written as

liminf(inffα) ≤ inff(3.12)

limsup(inffα) ≤ inff .(3.13)

Prop. 3.7 then implies that if fα converges to f pointwise, we have

(3.14) inff ≤ inff .

On the other hand, Prop. 3.8 gives that if fα converges to f uniformly,

(3.15) inff ≤ inff .

And finally from epi(f ) ⊇ epi(f ) we also get inff ≤ inff so we have that in the
case of uniform convergence inff = lim(inffα).

The above discussion also highlights another fact: if we only know epigraphical
convergence of fα to f , the only useful statement we can prove is

limsup(inffα) ≤ inff .

We illustrate this with an example.

Example 3.16. Consider the sequence of functions fn : R→R, given by

fn(x) =

0 x < n

−1 x ≥ n

It is not too hard to see that fn converges pointwise and locally uniformly to f (x) ≡
0. And hence fn→ 0 epigraphically. But we have inffn = −1 for all n and inff = 0.

4. Convergence of Infimum

Let fα be a net of functions from X → R, and denote by f = fnτ-limepi(fα) as
before. Our goal is to find sufficient conditions that verifies

(4.1) liminf(inffα)
?
≥ inff .

In view of the general inequality (3.12), the above is equivalent to the equality of
the two sides. In terms of the corresponding epigraphs Fα and F, we are equiva-
lently asking: when does the implication

(4.2) Fα ∩X × [−∞, z) is frequently non-empty
?

=⇒ F ∩X × [−∞, z) , ∅

hold. Thinking of F as some sort of accumulation points of Fα , we immediately
realize that what we need is some sort of compactness condition.
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Proposition 4.3. If X is a topological space and Sα a net of subsets. Let K ⊆ X be
compact, be such that Sα ∩ K is frequently non-empty. Then (τ-limSα) ∩ K is non-
empty.

Proof. It is easier to prove the contrapositive. If K is disjoint from τ-limSα , then
every element of K repels Sα , or that for every x ∈ K there exists Ox ∋ x open such
that Ox ∩ Sα is eventually empty. The set {Ox} covers K , so by compactness has a
finite subcover labelled O1, . . . ,On. Corresponding to which are indices α1, . . . ,αn
such that Sα ∩Oi = for all α ≥ αi . Finiteness implies therefore Sα ∩∪{Oi} is even-
tually empty, which implies Sα is eventually disjoint from K . □

Corollary 4.4. If the epigraphs Fα are such that, for some compact K , and some z ∈R,
we have Fα∩(K×[−∞, z]) is frequently non-empty. Then F∩(K×[−∞, z]) is non-empty.

Corollary 4.5. Let fα : X → R be a net of functions, and denote by f = fnτ-limepi(fα).
Then for any K ⊆ X compact,

liminf(inf
K

fα) = inf
K

f .

Proof. Let z > liminf(infK fα), then frequently infK fα < z, or frequently K×[−∞, z]∩
epi(fα) is non-empty. By the previous corollary we have that τ-limepi(fα) inter-
sects K × [−∞, z], and hence there is some x ∈ K where f (x) ≤ z. This implies
infK f ≤ z. As this is true for all z > liminf(infK fα), we conclude that liminf(infK fα) ≥
infK f . The reverse inequality follows from (3.12). □

This shows that the noncompactness illustrated in Example 3.16 is essentially
the only enemy. We can wrap up by tying things back to the notion of epigraphical
convergence.

Theorem 4.6. Fix K a compact topological space. Let fα : K →R be a net of functions
that converge epigraphically to f : K →R. Then

(1) the net inffα converges to inff .
(2) let Sα ⊆ K be given by Sα = f −1

α (inffα). If f is additionally lower semi-
continuous, then τ-limSα ⊆ f −1(inff ).

Proof. (1) By Cor. 4.5 combined with (3.13) we have

inff ≤ liminf(inffα) ≤ limsup(inffα) ≤ inff .

(2) If x ∈ τ-limSα , then for every open set O ∋ x we know Sα frequently in-
tersects O. By definition fα |Sα = inffα , which converges to inff by the
first part. So for every open interval I containing inff , we have Sα is
frequently in O and fα(Sα) is eventually in I , which means that the set
Sα×{inffα} frequently intersects O×I . Thus (x, inff ) ∈ τ-limepi(fα). Since
we assumed epigraphical convergence, τ-limepi(fα) = epi(f ), and hence
we have (x, inff ) ∈ epi(f ). Using that f is assumed to be lower semi-
continuous, this means f (x) ≤ inff . By the definition of infimum this is in
fact an equality.

□

The second claim of the theorem can be regarded as the upper semi-continuity
of the minima. More precisely, let (X,τ) and (Y ,σ ) be topological spaces. We can
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consider a function f : Y → 2X that outputs subsets of X. Given y ∈ Y , we can take
the canonical net γ that converges to y, and consider τ-limf ◦γ and τ-limf ◦γ .

Our previous result suggests that these two sets can be considered as a sort of
limit superior and inferior respectively, as we know τ-limf ◦ γ ⊆ τ-limf ◦ γ , so
that they have the correct relation with respect to the set inclusion ordering on 2X .
Then we may say that f is continuous at y if τ-limf ◦ γ = τ-limf ◦ γ . Similarly,
upper semi-continuity can be defined to be

(4.7) τ-limf ◦γ ⊆ f (y).

With these definitions, the above Theorem can be rephrased as follows.

Theorem 4.8. Fix K a compact topological space and X a topological space. Consider
a mapping f : K × X → R. Fix x0 a point in X, and suppose as a family of K → R

functions f (·,x) converges to f (·,x0) epigraphically as x → x0. Furthermore suppose
f (·,x0) is lower semi-continuous. Then

(1) The function g : X→R given by g(x) = infk∈K f (k,x) is continuous at x0.
(2) The set-valued function h : X → 2K given by h(x) = {k ∈ K | f (k,x) = g(x)} is

upper semi-continuous (in the sense discussed in the previous paragraph) at x0.

For applications, we would typically want to assume that f is a continuous
mapping. Then the compactness of K implies that for every ϵ > 0 and for ev-
ery x0 there exists an open set O ∋ x0 such that for x ∈ O and k ∈ K , we have
|f (k,x) − f (k,x0)| < ϵ. In other words, this ensures f (·,x) converges to f (·,x0) uni-
formly as x→ x0, and hence the convergence is also epigraphical. The hypothesis
also implies that f (·,x0) is lower semi-continuous, so all hypotheses are met. We
summarize this application as a corollary.

Corollary 4.9. Let K be a compact topological space and X a topological space. Take
f : K ×X → R a continuous mapping and define g : X → R by g(x) = infk∈K f (k,x),
and h : X→ 2K by h(x) = {k ∈ K | f (k,x) = g(x)}. Then:

• g is continuous.
• h is upper semi-continuous.
• h(x) is not empty for any x.

If furthermore h(x) is known to be a singleton set for all x, then h(x) = {h̃(x)} where
h̃ : X→ K is continuous.
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