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Abstract. We explore some features of order convergence on a complete lattice,
focusing specifically on where the general case agrees and differs from the elemen-
tary setting where the lattice is the extended real line R. Using this language, we
revisit both classical concepts such as convergences of nets in topological spaces
and pointwise convergence of functions, as well as more modern ideas in opti-
mization related to the convergence of nets of sets and epigraphical convergence
of functions.

1. Review of Terminology

The material in this section is standard. Convenient references include [1–3, 5,
8].

1.1. Posets and Complete Lattices. A partially ordered set (or poset) is a set P
equipped with a relation ≤ that is reflexive, antisymmetric, and transitive. In a
poset P , given x ∈ P , we will denote by

(1.1)
↑(x) def= {y ∈ P | x ≤ y};

↓(x) def= {z ∈ p | z ≤ x}.

Similarly, given a subset S ⊆ P , we denote by

(1.2) ↑(S) def=
⋃
{↑s | s ∈ S}, ↓(S) def=

⋃
{↓(s) | s ∈ S}.

If we take the intersection instead, we define the sets of upper bounds and lower
bounds.

(1.3) ub(S) def=
⋂
{↑(s) | s ∈ S}, lb(S) def=

⋂
{↓(s) | s ∈ S}.

A set A ⊆ P is said to be an upper set (resp. lower set) if a ∈ A =⇒ ↑(a) ⊆ A
(resp. ↓(a) ⊆ A). It is easily checked that both ↑(S) and ub(S) are upper sets.

Given a subset S, an element s ∈ S is maximal if ↑ (s) ∩ S = s; minimality is
similarly defined. An element s ∈ S is the (unique) maximum element if S ⊆↓ (s).
Similarly we can define the minimum element. Most sets in most posets do not
contain maximum or minimum elements.

Definition 1.4 (Complete Lattice). A poset (L,≤) is said to be a complete lattice if,
for every S ⊆ L,

• ub(S) has a minimum element, and
• lb(S) has a maximum element.

Date: March 4, 2025.

1



2 WILLIE WY WONG

In a complete lattice, we denote by

sup(S) def= the minimum element of ub(S),

inf(S) def= the maximum element of lb(S).

Thus, we use (deliberately) the same notation as in real variables where sup
denotes the least upper bound and inf denotes the greatest lower bound. It is
clear that if S has a maximum element then it would be sup(S), and if S has a
minimum element then it would be inf(S); the reverse implication fails as usual.

As this note is intended to be expository, for readers familiar with the order
structure of the real numbers, a prototypical example of a complete lattice is not
the real numbers, but the extended reals R = [−∞,+∞]. Dedekind completeness of
the ordinary real numbers almost gives us the existence of sup and inf for all sets;
we only impose the condition that the sets are a priori bounded. The additional
elements ±∞ are included to formally give meaning to sup and inf of unbounded
sets.

1.2. Complete Distributivity. For handling expressions involving nested suprema
and infima, it is sometimes convenient to know how the two interact. We formal-
ize this as a definition.

Definition 1.5 (Complete distributivity). A complete lattice (L,≤) is said to be
completely distributive if for every pair of index sets I, J and every mapping x :
I × J→ L, we have

sup
i∈I

inf
j∈J

x(i, j) = inf
f ∈JI

sup
i∈I

x(i, f (i)).

It is known that being completely distributive is self-dual, so that a complete
lattice is completely distributive if and only if the definition also holds with sup
and inf swapped.

Examining the defining condition, we see that for any f ∈ JI , we have

x(i, f (i)) ≥ inf
j∈J

x(i, j).

And hence
sup
i∈I

x(i, f (i)) ≥ sup
i∈I

inf
j∈J

x(i, j).

As this holds for any choice of f , we find that

Proposition 1.6. For any complete lattice, distributive or otherwise,

sup
i∈I

inf
j∈J

x(i, j) ≤ inf
f ∈JI

sup
i∈I

x(i, f (i))

holds for any x : I × J → L. Similarly, we also have

inf
i∈I

sup
j∈J

x(i, j) ≥ sup
f ∈JI

inf
i∈I

x(i, f (i)).

Thus we see that one inequality in the definition of complete distributivity is
universal, and the content of the definition lies in the other inequality.

Example 1.7. The basic example of a completely distributive complete lattice is
the extended real line. In this case the key observation is that by the fact that the
ordering on the extended real line is a total order, if y > supi∈I infj∈J x(i, j), then
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there exists a function f such that x(i, f (i)) ≤ y. This shows that supi∈I x(i, f (i)) ≤ y.
And hence

y > sup
i∈I

inf
j∈J

x(i, j) =⇒ y ≥ inf
f ∈JI

sup
i∈I

x(i, f (i)).

This shows the desired equality.

Example 1.8. Let L be the power set of some set X, and ≤ be given by subset inclu-
sion. Then this forms a completely distributive complete lattice. Here the supre-
mum over a family of sets is their union, and infimum is their overall intersection.

To prove this, it is enough to show that

z < sup
i∈I

inf
j∈J

x(i, j) =⇒ z < inf
f ∈JI

sup
i∈I

x(i, f (i)).

In our setting, the hypothesis is equivalent to z < infj∈J x(i, j) for any i, which im-
plies for every i there is some j such that z < x(i, j). Hence there exists1 a function
f : I → J such that z < x(i, f (i)) for any i, which implies the desired conclusion.

Example 1.9. For an example of a complete lattice that is not completely distribu-
tive, Let L be the set of all closed subsets of R organized by inclusion. If S is a
collection of closed sets, then

infS =
⋂

S, supS = cl(
⋃

S).

(We use cl(·) the topological closure.) This shows that L is a complete lattice.
To show that L is not completely distributive, let I = J = N and x(i, j) be the

singleton sets

x(i, j) =
{ 1
max(i, j)

}
.

Fixing i, we see that infj∈J x(i, j) = ∅. On the other hand, for any f : N→N we have
that x(i, f (i)) ⊆ (0, 1

i ] and hence as a sequence of points (indexed by i) converges to
0. Hence 0 ∈ supi∈I x(i, f (i)) for any f . Thus we see that

∅ = sup
i∈I

inf
j∈J

x(i, j) while 0 ∈ inf
f ∈JI

sup
i∈I

x(i, f (i))

showing that L is not completely distributive.

1.3. Nets. A directed set (A,≤) is a set equipped with a relation ≤ that is reflexive
and transitive (but not necessarily antisymmetric), such that for any finite subset
S ⊆ A the set ub(S) is non-empty2.

Given X a set, and (A,≤) a directed set. A net (or Moore-Smith sequence) in X,
indexed by (A,≤), is an assignment xα ∈ X to each element α ∈ A. A common ex-
ample is when we use (N,≤) with the standard ordering as the underlying directed
set. In this case our net is what classically we call “sequences”. When referring
to the entire net (as opposed to a single item in the net), we will enclose it in
parentheses as (xα).

For convenience, we will denote by

(1.10) x↑(α)
def= {xβ | β ∈ ↑(α)}.

Sets of these form are called residual sets of the net (xα).

1We accept axiom of choice.
2While we defined ub(S) for subsets of a poset, the same words and symbols can be used for any

set equipped with any relation.
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Given a net (xα), we say that a mathematical statement is eventually true for
(xα) if it is true for some residual set x↑(α0). On the other hand, a mathematical
statement is frequently true if, for every α ∈ A, there is β ≥ α such that the statement
is true for xβ .

2. Order Convergences

Fundamental to topology is the determination whether a given net converges.
In this section we will describe some notions of convergence for nets in a complete
lattice. There are many order topologies considered on various forms of posets,
some of which can be found in [5, 6, 9]. In the MSC2020 database [4] the study
of topological lattices and continuous lattices are given their own subject codes
(06B30 and 06B35 respetively). Our starting point is analytic in nature, and we
draw analogies from real-variables theory.

The classical definition of limits superior and inferior can be reproduced for
nets in a complete lattice. We have:

Definition 2.1. Let (L,≤) be a complete lattice, and (xα) a net in L indexed by A,
we can define its limits superior and inferior using via

limsup(xα) = inf{sup(x↑(β)) | β ∈ A}
liminf(xα) = sup{inf(x↓(β)) | β ∈ A}.

2.1. Eventual and frequent bounds. Given a net in a complete lattice, we can
talk about whether an element is eventually or frequently an upper (lower) bound
of the net. We formalize this definition:

Definition 2.2 (Eventual and frequent upper/lower bounds). Let (L,≤) be a com-
plete lattice, and (xα) a net in L indexed by A. The set of eventual upper bounds of
(xα) is defined to be

(e)ub(xα) def= {y ∈ L | y ≥ xα is eventually true }.
The set of frequent upper bounds of (xα) is defined to be

(f)ub(xα) def= {y ∈ L | y ≥ xα is frequently true }.
We similarly define eventual lower bounds and frequent lower bounds, and denote
them by (e)lb(xα) and (f)lb(xα) respectively.

Their corresponding infima and suprema can be interpreted as version of the
limits superior and limits inferior.

Definition 2.3. Let (L,≤) be a complete lattice, and (xα) a net in L indexed by A.
We define

(e)limsup(xα) def= inf (e)ub(xα)

(f)limsup(xα) def= inf (f)ub(xα)

(e)liminf(xα) def= sup (e)lb(xα)

(f)liminf(xα) def= sup (f)lb(xα)

The eventual versions turns out to be the classical version of limit superior and
limit inferior in a complete lattice.
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Proposition 2.4. Given a net (xα) in a complete lattice, we have the equalities
(e)limsup(xα) = limsup(xα) and (e)liminf(xα) = liminf(xα).

Proof. We prove the first formula, the second is identical.
First, notice that if y ∈ (e)ub(xα), then it is an upper bound of x↑(α0) for some

α0 ∈ A, which means that y ≥ sup(x↑(α0)). This means that

lb({sup(x↑(β)) | β ∈ A}) ⊆ lb((e)ub(xα)).

On the other hand, by definition for any β ∈ A we have sup(x↑(β)) is an eventual
upper bound, and hence

lb({sup(x↑(β)) | β ∈ A}) ⊇ lb((e)ub(xα)).

So the two sets of lower bounds agree, and so the infima must agree. □

The definitions immediately imply the following facts:

• (e)ub(xα) ⊆ (f)ub(xα);
• (e)lb(xα) ⊆ (f)lb(xα);
• y ∈ (e)lb(xα) and z ∈ (f)ub(xα) implies y ≤ z.
• y ∈ (f)lb(xα) and z ∈ (e)ub(xα) implies y ≤ z.

Note however in general frequent lower bounds and frequent upper bounds may
fail to be comparable. A consequence of these comparison relations is that we have

(2.5) (e)liminf(xα) ≤
(f)liminf(xα)
(f)limsup(xα)

≤ (e)limsup(xα).

Proposition 2.6. If (L,≤) is a completely distributive complete lattice, then
(e)liminf(xα) = (f)limsup(xα)
(f)liminf(xα) = (e)limsup(xα).

Proof. We prove the first claim, the second is similar. Note that one direction is
already proven as part of (2.5); it suffice to prove the reverse.

Given our net xα , define ξ : A×A→ L by

ξ(α,β) =

xβ α ≤ β

xα otherwise
.

Then for α ∈ A, we have that {x(α,β) | β ∈ A} = x↑(α). So by Prop. 2.4 we have that

(e)liminf(xα) = sup
α∈A

inf
β∈A

ξ(α,β).

Since the lattice is assumed to be completely distributive, we have also
(e)liminf(xα) = inf

f ∈AA
sup
α∈A

ξ(α,f (α)).

Now, suppose that f ∈ AA. Let g : A→ A be given by

g(α) =

f (α) α ≤ f (α)
α otherwise

.

Then we have that ξ(α,f (α)) = ξ(α,g(α)) = xg(α), and that g(α) ∈ ↑(α) for every α.
Therefore supα∈A ξ(α,g(α)) ≥ xg(α) for each α, which shows that supα∈Aξ(α,g(α)) ∈



6 WILLIE WY WONG

(f)ub(xα). Taking the infima we see therefore (e)liminf(xα) ≥ (f)limsup(xα) as needed.
□

Example 2.7. We illustrate the distinction between (e)liminf(xα) and (f)limsup(xα)
using the non-completely-distributive lattice L, consisting of closed subsets of a
topological space X. This example is closely related to Ex. 1.9.

Let X be a topological space. Let L be the collection of all closed subsets of X.
Consider pα a net in X, and set xα = {pα} the corresponding net of singleton sets.

We have that y ∈ (e)liminf(xα) if and only if pα is eventually constant (and hence
equal to y), and y ∈ (f)liminf(xα) if and only if there is a subnet of pα that is even-
tually constant and equals to y.

The set (e)limsup(xα) can be easily seen to be the set of all accumulation points
of (xα). Finally, let’s consider (f)limsup(xα). By definition q ∈ (f)limsup(xα) if and
only if q ∈ y for every y ∈ (f)ub(xα). In other words, q′ < (f)limsup(xα) if and only if
there is some y ∈ (f)ub(xα) such that q′ < y. This is equivalent to saying that there
exists an open neighorhood (X \ y) of q′ such that xα is frequently outside of said
neighborhood. Which is equivalent to the statement that (xα) does not converge to
q′ . Therefore, we in fact have the following characterization: (f)limsup(xα) is the
set {q ∈ X | xα→ q}.

Consider now the following explicit examples.

• Let X be the non-Hausdorff topological space of the real line with two
zeros. Let pn be the sequence with p2k = 02 (the second copy of 0) and
p2k−1 = 1

k . Then we have

(e)liminf(xn) = ∅ ⊊ (f)liminf(xn) = {02} ⊊ (f)limsup(xn) = {01,02} = (e)limsup(xn).

• Let X be the standard real line, and pn given by p2k = 1 and p2k−1 = 1
k .

Then we have
(e)liminf(xn) = ∅ = (f)limsup(xn) ⊊ (f)liminf(xn) = {0} ⊊ (e)limsup(xn) = {0,1}.

Example 2.8 (Inner and outer limits). Let X be a topological space, and Sα be a
net of closed3 subsets thereof. The inner and outer limits of set-valued analysis (see
[7, Ch. 4]) are defined as follows:

• The outer limit of Sα consists of all points x ∈ X with the property “every
open neighborhood O ∋ x intersects Sα frequently.”

• The inner limit of Sα consists of all points x ∈ X with the property “every
open neighborhood O ∋ x intersects Sα eventually.”

These two notions are in fact related to our definitions above.
Observe that the statement “x is not in the outer (inner) limit” is equivalent

to the statement that “there is an open neighborhood O ∋ x that is eventually
(frequently) disjoint from Sα .” This shows that both the outer and inner limits are
closed sets. Next, our statement is equivalent to “there is a closed set C disjoint
from x that eventually (frequently) contains Sα .” This we rephrase as “x is disjoint
from some eventual (frequent) upper bound of Sα .” Therefore we conclude:

3In the literature the inner and outer limits are usually defined for arbitrary sets. But since given
an open set O, we have that O intersects a set S if and only if O intersects its closure, we see that the
inner/outer limits of Sα is invariant if we replace each element of the net by its closure. From the point
of view of lattice theory it however makes more sense to think only about closed sets.
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• The outer limit of Sα is exactly (e)limsup(Sα), where we use as our lattice
the set of all closed subsets of X;

• and similarly the inner limit of Sα is exactly (f)limsup(Sα).

2.2. Convergence Concepts. Starting from (2.5), one is led to define convergences
through the coincidence of two or more of the limiting quantities. The most basic
is the notion with which we defined convergence on the (extended) real line:

Definition 2.9 (Moore–Smith Order Covergence). Let (L,≤) be a complete lat-
tice. We say that a net xα converges in the Moore–Smith sense if (e)limsup(xα) =
(e)liminf(xα). (By (2.5) we must also have that (f)limsup(xα) and (f)liminf(xα) equal
the same value.)

An alternative notion is formed when we instead compare eventual upper bounds
to frequent upper bounds; that this is a useful notion in topology follows from the
analyses in Examples 2.7 and 2.8.

Definition 2.10 (Painlevé–Kuratowski Convergence). Let (L,≤) be a complete lat-
tice. We say that a net xα converges in the Painlevé–Kuratowski sense if (e)limsup(xα) =
(f)limsup(xα). (Note that this says nothing about (e)liminf(xα) or (f)liminf(xα).)

From (2.5) and Prop. 2.6, we conclude the following:

Proposition 2.11.
(1) Moore–Smith convergence implies Painlevé–Kuratowski convergence.
(2) On completely distributive complete lattices, Moore–Smith and Painlevé–Kuratowski

convergences coincide.

Remark 2.12. One may of course ask whether it is meaningful to also consider the
coincidence of (e)limsup(xα) with (f)liminf(xα). That this concept is less useful
comes again from Prop. 2.6, which asserts that the two quantities coincide for
any net in any completely distributive lattice. Hence it seems less likely that the
coincidence of these two quantities will provide a meaningful/nontrivial notion
of convergence in general.

Concepts familiar from the Moore–Smith convergence on the extended real line
can be carried over in general to Painlevé–Kuratowski convergence also.

Theorem 2.13 (Monotone convergence). If xα is a monotone net in a complete lattice,
then it converges in the Painlevé–Kuratowski sense.

Proof. If xα is decreasing, then every frequent upper bound is clearly an eventual
upper bound, and the result follows trivially.

Suppose xα is increasing, and y a frequent upper bound. Then for every β ∈ A
there exists γ ≥ β such that y ≥ xγ . But since x is assumed to be increasing, we have
xγ ≥ xβ , showing that y ≥ xβ . Since β is arbitrary we conclude that y is necessarily
an eventual upper bound. And the result follows. □

Theorem 2.14 (Squeeze theorem). Let A be a fixed index set and xα , yα , zα be three
nets in a complete lattice, such that for every α we have xα ≤ yα ≤ zα . If xα and zα both
Painlevé–Kuratowski converges to the same limit, then so does yα .

Proof. The ordering implies
(e)ub(zα) ⊆ (e)ub(yα) ⊆ (e)ub(xα)
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and
(f)ub(zα) ⊆ (f)ub(yα) ⊆ (f)ub(xα).

Taking the infima we find
(e)limsup(zα) ≥ (e)limsup(yα) ≥ (e)limsup(xα)

and
(f)limsup(zα) ≥ (f)limsup(yα) ≥ (f)limsup(xα).

The result follows. □

3. Function convergences

Let X be a topological space, and f : X→ R a function. By the epigraph of f we
refer to the subset

(3.1) epi(f ) def= {(x,s) ∈ X ×R | f (x) ≤ s}.
We say that f is lower semi-continuous if epi(f ) is closed in the product topology.

We can partially order functions using set inclusion of the epigraphs:

(3.2) f ⪯ g ⇐⇒ epi(f ) ⊆ epi(g) ⇐⇒ ∀x ∈ X,f (x) ≥ g(x).

Note that this implies the opposite comparison of the pointwise values of the func-
tions in question.

Observe that if F is a family of functions X→R, if we define

(3.3) g(x) def= sup{f (x) | f ∈ F }
to be the pointwise supremum, we also have that

epi(g) =
⋂
{epi(f ) | f ∈ F }.

3.1. Pointwise convergence. First I claim that if I set L to be the set of all X→ R

functions, then it is a complete lattice with order given by (3.2). As usual it suffices
to show that L is inf-complete. But it is not too hard to check that in our ordering,
the infimum of a family F is precisely the point-wise supremum as given in (3.3).

The following claims we left as exercise to the reader:

Proposition 3.4. Let L be the complete lattice of X → R functions with the ordering
(3.2).

(1) L is completely distributive.
(2) Moore–Smith convergence on L is equivalent to Painlevé convergence on L, and

they are both equivalent to pointwise convergence of the net of functions.

Note that in this setting we made no use of the topology of X; for all intents and
purposes X can be just any set with or without topology.

3.2. Γ -convergence. Now instead we let L be the set of all lower semi-continuous
functions from X→R. We still use the same ordering (3.2).

I claim that this still makes L a complete lattice. Again it suffices to show that L
is inf-complete. Given a family F , we again set g to be the pointwise supremum.
Our arguments before indicated that g has epigraph equal to

⋂
{epi(f ) | f ∈ F }.

But as each f ∈ F is lower semi-continuous, their epigraphs are closed and hence
their corresponding intersections are also closed. This shows that g is also an
element of L.
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Definition 3.5. By Γ -convergence or epigraphical convergence we refer to conver-
gence in the complete lattice of lower semi-continuous functions in the Painlevé-
Kuratowski sense.
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