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1. Introduction

This set of notes is meant to describe some aspects of polynomial approximations
to continuous functions. It in particular concerns the apparent discord between
the Weierstrass Approximation Theorem and Runge’s Phenomenon.

First let us recall the theorem due to Weierstrass:

thm:Weierstrass Theorem 1 (Weierstrass Approximation, real-variable version). Let f : [0,1] → R

be continuous. Then there exists a sequence of polynomials pn that approximates f
uniformly on [0,1]. That is to say we have

(1) lim
n→∞

sup
x∈[0,1]

|f (x)− pn(x)| = 0 .

In particular, the theorem establishes that the polynomials are dense in the set of
continuous functions C([0,1];R) in the topology of the uniform norm. Note also
by re-scaling, the interval [0,1] in Theorem

thm:Weierstrass
1 can be replaced by by any compact

interval [a,b].
On the other hand, Runge’s example concerns the following function,

(2) R(x) =
1

1 + x2 , x ∈ [−5,5] .

By Weierstrass’s theorem, there exists an approximating sequence of polynomials.
Naïvely one may try to construct this sequence by polynomial interpolation.

Definition 2. Let f (x) : [a,b]→R be continuous. We denote by In[f ] the nth order
equidistant polynomial interpolation of f . That is to say, we denote by In[f ] the
unique nth order polynomial such that

In[f ](a+ i(b − a)/n) = f (a+ i(b − a)/n) , ∀i ∈ {0,1, . . . ,n} .

More generally, for each n ≥ 2, let σn be a subset of [a,b] consisting of n+1 distinct
points, two of which are a and b. We denote by Iσn [f ] the nth order polynomial
interpolation of f relative to the points σn. That is to say we let Iσn [f ] be the unique
nth order polynomial such that

Iσn [f ](x) = f (x) , ∀x ∈ σn .

Note that by definition, there exists a subsequence Ink [R] which converges on
every rational point in [−5,5] (let nk =

∏k+1
i=1 pi where pi is the ith smallest prime
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number). But as it turns out, for the function R(x), we not only have a lack of
uniformity in the “convergence” of In[R] to R, we have in fact that

limsup
n→∞

sup
x∈[−5,5]

|In[R](x)−R(x)| = +∞ .

As we shall see below, the method of polynomial interpolation is not particularly
good for constructing the approximation sequence. In turns out that a better
approximation can be obtained explicitly using Bernstein polynomials (incidentally
we can directly prove Theorem

thm:Weierstrass
1 using these polynomials).

2. Weierstrass approximation through Bernstein polynomials

We first recall the Bernstein polynomials.

Definition 3. By Bk,n(t) we denote the kth Bernstein polynomial of order n. They
can be explicitly given by

(3) Bk,n(t) =
(
n
k

)
tk(1− t)n−k .

We note that they form a partition of unity:
∑n
k=0Bk,n(t) = [t + (1− t)]n = 1.

Definition 4. Let f : [0,1] → R be continuous. Denote by Bn[f ] the Bernstein-
polynomial approximation of f , which we define as

Bn[f ](x) =
n∑
k=0

f (k/n)Bk,n(x) .

By construction Bn[f ] is a polynomial of degree at most n. It is easily checked
that since Bk,n(0) = δk,0 = Bn−k,n(1), that Bn[f ](0) = f (0) and Bn[f ](1) = f (1). We
claim that

eq:bernsteinconveq:bernsteinconv (4) lim
n→∞

sup
x∈[0,1]

|Bn[f ](x)− f (x)| = 0

which would imply Theorem
thm:Weierstrass
1.

Proof of (
eq:bernsteinconv
4). Since

∑
kBk,n = 1, we have that Bn[f ] is a weighted average. We will

show that as n grows, the weight heavily favours the points where k/n ≈ x.
First we compute a few things about Bk,n(x). Observe that

n∑
k=0

k
n
Bk,n(x) =

n∑
k=0

k
n

(
n
k

)
xk(1− x)n−k

=
n∑
k=1

k
n
n
k

(
n− 1
k − 1

)
x · xk−1(1− x)(n−1)−(k−1)

= x ·
n−1∑
j=0

(
n− 1
j

)
xj (1− x)n−1−j

= x ·
n−1∑
j=0

Bj,n−1(x) = x

(5)
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So in particular
∑
k(k/n− x)Bk,n(x) = 0. Next we see that

n∑
k=0

(
k
n
− x

)2

Bk,n(x) = −x2 +
n∑
k=1

k
n

(
n− 1
k − 1

)
xk(1− x)n−k

= −x2 + x · n− 1
n

n−1∑
j=0

( j

n− 1
+

1
n− 1

)(n− 1
j

)
xj (1− x)(n−1)−j

= −x2 +
n− 1
n

x ·

n−2∑
`=0

xB`,n−2(x) +
1

n− 1

n−1∑
j=0

Bj,n−1(x)


= −x2 +

n− 1
n

x(x+ 1/(n− 1)) =
1
n
x(1− x)

eq:varianceeq:variance (6)

Now we are in a position to conclude the proof. Fix an ε > 0. Using that f (x) is
continuous on a compact interval [0,1], we have that f (x) is uniformly continuous,
and hence there exists a δ such that

∣∣∣f (x)− f (y)
∣∣∣ < ε whenever

∣∣∣x − y∣∣∣ < δ. Uniform
continuity also implies that f (x) is bounded: |f (x)| <M. We consider

(7) |Bn[f ](x)− f (x)| ≤
n∑
k=0

|f (k/n)− f (x)|Bn,k(x)

=

 ∑
|k/n−x|<δ

+
∑

|k/n−x|≥δ

 |f (k/n)− f (x)|Bn,k(x) .

For the first sum, by uniform continuity we have that |f (k/n)− f (x)| < ε, and since∑
Bk,n = 1 we have that

(8)
∑

|k/n−x|<δ
|f (k/n)− f (x)|Bn,k(x) < ε .

For the second sum, we estimate

eq:secondsumeq:secondsum (9)
∑

|k/n−x|≥δ
|f (k/n)− f (x)|Bn,k(x) ≤

∑
|k/n−x|≥δ

2M
δ2 |k/n− x|

2Bn,k(x) ≤ 2M
δ2n

by (
eq:variance
6). So by choosing n > 2M

δ2ε
, we have that

|Bn[f ](x)− f (x)| ≤ 2ε

independent of x, and so we obtained the uniform convergence. �

An after-note: the above proof can be interpreted using the probabilistic point
of view as saying something about the binomial distribution. Observe that if we
have a biased coin that lands with probability p heads and probability (1− p) tails,
the probability of receiving k heads after n tosses is exactly Bk,n(p). So by the Law
of Large Numbers, we expect that as n ↗ ∞, for a fixed x, the functions Bk,n(x)
will be all mostly close to zero except for the few points where k/n ≈ x. Hence in
the summation Bn[f ](x) we expect mostly only contributions from f (k/n) where
k/n ≈ x. By continuity this means that Bn[f ](x) ≈ x. The argument given above
makes this intuition rigorous.

Notice that also that in the construction of Bn[f ], the only points at which Bn[f ]
is guaranteed to be equal to f are the two endpoints 0 and 1.
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Notice also that in the proof above, the rate of convergence can be quantita-
tively estimated if we have Lipschitz control on f . That is, suppose we know that∣∣∣f (x)− f (y)

∣∣∣ ≤N ∣∣∣x − y∣∣∣ for all x,y ∈ [0,1], then we have that δ ≥ ε/N , and also that
(
eq:secondsum
9) can be replaced by

eq:secondsumprimeeq:secondsumprime (9’)
∑

|k/n−x|≥δ
|f (k/n)− f (x)|Bn,k(x) ≤

∑ N3

ε2 |k/n− x|
2Bn,k(x) ≤ N3

ε2n
.

So we have a rate of convergence of at least ε ≈ n−1/3.

3. Divergence of interpolation polynomials

In this section we will discuss a bit the case of divergence, namely that of the
Runge example. A good part of the material is taken from Epperson1. The exact
behaviour of the Runge example requires a dose of complex analysis.

Suppose now that f (x) extends to f (z), a function that is complex analytic in
a neighborhood of the subset [a,b] × {0} of the complex plane. For the explicit
function R(x) we take R(z) = (1 + z2)−1 which is holomorphic away from ±i.

Let σn = {z0, . . . , zn} be a collection of distinct points in the region where f (z)
is holomorphic. We let Iσn [f ] be the polynomial interpolation of f based on the
control points zj . Then we have that f (z)− Iσn [f ](z) is holomorphic whenever f is,
and vanishes at z0, . . . , zn. This means that we can write

gσn (z) def=
f (z)− Iσn [f ](z)

wσn (z)

where

(10) wσn (z) =
n∏
i=0

(z − zi)

such that gσn (z) is holomorphic in the domain of holomorphicity of f (z). Now, let γ
be a closed contour, and let z be a point belonging to the domain bounded by γ .
Writing Gσn (ζ) = gσn (ζ)/(ζ − z) and applying to it the residue theorem, we have that

1
2πi

∮
γ

Gσn (ζ) dz = gσn (z) +
∑
k

Res(Gσn , ak)

where {ak} enumerates the poles of f (z) contained inside the domain bounded by γ .
We can rewrite as

1
2πi

∮
γ

Gσn (ζ) dz = gσn (z) +
∑
k

1
wσn (ak) · (ak − z)

Res(f ,ak) .

So finally, after rearranging the terms we get

eqn:errorestimateeqn:errorestimate (11) f (z)− Iσn [f ](z) =
1

2πi

∮
γ

wσn (z)
wσn (ζ)

f (ζ)
ζ − z

dz −
∑
k

wσn (z)
wσn (ak)

Res(f ,ak)
ak − z

.

So we see that the key to understanding the error behaviour as n→∞ is through
understanding the function wσn (z). Obviously, the limiting behaviour of wσn (z) as
n→∞ would depend on the sequence of sets σn.

1James Epperson, “On the Runge example”, Amer. Math. Monthly 94 (1987), 329–341
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Denote by δσn the counting measure attached to σn. Let us assume that 1
n+1δσn →

ρ in measure. Then

1
n+ 1

log |wσn (z)| =
1

n+ 1

∫
log |z − ζ| dδσn(ζ)

and hence for each fixed point z outside the support of ρ we have that

lim
n→∞

1
n+ 1

log |wσn (z)| =
∫

log |z − ζ| dρ(ζ) .

Hence we can interpret the function

eqn:winftyeqn:winfty (12) w̄σ∞(z) def= lim
n→∞
|wσn (z)|

1
n+1 = exp

(∫
log |z − ζ| dρ(ζ)

)
.

By differentiating under the integral sign, which we can do as long as we stay away
from the support of the measure ρ, we have that w̄σ∞(z) is real-valued and smooth.

Now, assume that ρ has empty interior: that is to say that for every point
y ∈ supp(ρ) and every open set V 3 y, V \supp(ρ) , ∅. Furthermore assume that the
function w̄σ∞ defined by (

eqn:winfty
12) extends continuously to the support of ρ. Then since

|wσn (z)|
1
n+1 are continuous functions, we conclude that the point-wise convergence

established in (
eqn:winfty
12) implies the convergence also on the support of ρ.

Now we can discuss the convergence and divergence of the polynomial interpo-
lation. Henceforth z is a fixed point and γ is a closed curve not intersecting the
support of ρ (which guarantees that w̄σ∞|γ > 0), with the property that

(1) z is in the domain bounded by γ ;
(2) w̄σ∞(z) < infζ∈γ w̄σ∞(ζ).

Then passing to the limit we have that

lim
n→∞

∣∣∣∣∣wσn (z)
wσn (ζ)

∣∣∣∣∣ ≤ lim
n→∞

(
w̄σ∞(z)

infζ∈γ w̄
σ
∞(ζ)

)n+1

= 0 .

Hence (
eqn:errorestimate
11) implies that

eqn:simplifiederroreqn:simplifiederror (13) lim
n→∞

f (z)− Iσn [f ](z) = − lim
n→∞

∑
k

wσn (z)
wσn (ak)

Res(f ,ak)
ak − z

.

Now, if z is a value such that we can choose γ to satisfy the above properties,
and such that for every pole ak enclosed by γ the value w̄σ∞(z) < w̄σ∞(ak), then using
the exact same argument as above, we can conclude that Iσn [f ](z)→ f (z). On the
other hand, if for every γ admissible we must include ak such that w̄σ∞(z) > w̄σ∞(ak),
then generically the right hand side must blow-up.

For the Runge example, the measure ρ coming from the limit of the equidistant
interpolation is the Lebesgue measure on the interval [−5,5]. Evaluating the integral
explicitly we have that at the two end-points w̄σ∞(±5) = exp(10ln10 − 10), while
at the midpoint w̄σ∞(0) = exp(10ln5 − 10). For the singularities of R(z) at ±i, we
compute

2

5∫
0

ln
√

1 + x2 dx = 5ln26− 10 + 2arctan5 ≈ 9.03728 . . . .
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Observing that

23 ≈ 10ln10 > 5ln26 + 2arctan5 ≈ 19 > 10ln5 ≈ 16

we see that in the segment x ∈ [−5,5] we have both convergent and divergent points.
In fact, we see from the above analysis the following stronger form of Runge’s

phenomenon:

Theorem 5. Let I = [a,b] be an interval. Let σn a sequence of finite subsets of n + 1
distinct points, two of which are a,b. Assume that 1

n+1δσn converges in measure to ρ, a
measure on [a,b] that is absolutely continuous with respect to the Lebesgue measure2. If
we assume further that the associated

eqn:infsupeqn:infsup (14) inf
I
w̄σ∞ < sup

I
w̄σ∞ ,

then we can find an appropriate real analytic function f defined on I such that Iσn [f ]
converges to f pointwise on some non-empty subset of I , while diverges on some non-
empty subset of I .

Sketch of proof. By continuity there exists a point z with=z > 0 such that w̄σ∞(z)
between the supremum and infimum of w̄σ∞(z) on I . Then the function f (ζ) =

1
(ζ−z)(ζ−z̄) is complex analytic in a neighborhood of I and takes real values on I . �

A natural next question to ask is: when is (
eqn:infsup
14) voided? This would require

dρ = ρ′(x) dx where ρ′(x) is Lebesgue integrable, such that

(15)

b∫
a

log |ξ − x|ρ′(ξ) dξ is constant in x ∈ [a,b] .

As it turns out, one of the answers is given by Chebyshev nodes. When the limiting
density ρ′(x) ∝ 1/

√
1− x2 (taking, for simplicity, −a = b = 1), a result of classical

potential theory gives that

wσ∞(z) ∝ log
2∣∣∣∣z+
√
z2 − 1

∣∣∣∣
where the complex function

√
z2 − 1 is defined (branch selection) so that lim|z|→∞

√
z2−1
z =

1. With this branch chosen, we have that for x ∈ R and |x| ≤ 1,
√
x2 − 1 =

√
1− x2i,

and hence the denominator ∣∣∣∣x+
√
x2 − 1

∣∣∣∣ = 1

is constant along the interval.
For completeness, we give the computation for the Chebyshev nodes. Taking the

transformation x = cosθ, we have that

2

1∫
−1

log |z − x|
dx

√
1− x2

=

π∫
−π

log |z − cosθ| dθ .

2This condition is not strictly necessary, but this helps avoid cases where the integral defining w̄σ∞ is
divergent.
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We write cosθ = 1
2 (eiθ + e−iθ). This prompts us to use the so-called Joukowski

transformation

z =
1
2

(ζ + ζ−1)

which is defined for every z < [−1,1]. This is because then we simplify

|z − cosθ| =
1
2

∣∣∣ζ + ζ−1 − eiθ − e−iθ
∣∣∣ =

1
2

∣∣∣ζ − eiθ ∣∣∣ ∣∣∣ζ−1 − e−iθ
∣∣∣ .

We can solve for ζ in terms of z to get ζ = z ±
√
z2 − 1. We choose the plus sign and

the definition of the square root as above, which implies that |ζ| ≥ 1. The integral
then becomes

π∫
−π

log

∣∣∣ζ − eiθ ∣∣∣ ∣∣∣ζ−1 − e−iθ
∣∣∣

2
dθ .

By the properties of the real valued logarithm it suffices to consider the integral
π∫
−π

log
∣∣∣ζ − eiθ ∣∣∣ dθ

which is physically the potential associated to a uniform distribution of charge on
the unit circle. As is well-known that for |ζ| ≥ 1 this potential is proportional to
log |ζ|. Putting this all together gives us the expression for w̄σ∞(z), and taking the
limit we get the desired conclusion.

4. Some final remarks

The discussion above with regards to the Chebyshev nodes show only that they
can be used to get good polynomial interpolation of real analytic functions. In
practice it turns out that Chebyshev nodes are good for all absolutely continuous
functions. On the other hand, once we go to the continuous case there are two
interestingly opposing theorems.

First, by Weierstrass approximation we know that we have uniform convergence
to any continuous function by some sequence of polynomials. As in turns out due to
the Chebyshev alternation theorem, we can find one such sequence that intersects
the original function in sufficiently many points, showing that this sequence can
be constructed by interpolation. However, the nodes here exists a fortiori, and are
different for each continuous function.

On the other hand, from an argument using the converse of the uniform bound-
edness principle, one can in fact show that for every set of subsets σn there exists a
continuous function for which the sequence of interpolating polynomials diverges.

The Wikipedia article on “polynomial interpolation”3 contains many references
in its section on convergence properties.

École Polytechnique Fédérale de Lausanne, Switzerland

E-mail address: willie.wong@epfl.ch

3
http://en.wikipedia.org/wiki/Polynomial_interpolation

http://en.wikipedia.org/wiki/Polynomial_interpolation
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